Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "compensation." wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Checkweigher using an EMFC weighing cell with magnetic springs and air-bearings
Autorzy:
Lee, Hyun-Ho
Yoon, Kyung-Taek
Choi, Young-Man
Powiązania:
https://bibliotekanauki.pl/articles/1849003.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
checkweigher
magnetic spring
electromagnetic force compensation
Opis:
A dynamic weighing system or a checkweigher is an automated inspection system that measures the weight of objects while transferring them between processes. In our previous study, we developed a new electromagnetic force compensation (EMFC) weighing cell using magnetic springs and air bearings. This weighing cell is free from flexure hinges which are vulnerable to shock and fatigue and also eliminates the resonance characteristics and implements a very low stiffness of only a few N/m due to the nature of the Halbach array magnetic spring. In this study, we implemented a checkweigher with the weighing cell including a loading and unloading conveyor to evaluate its dynamic weighing performances. The magnetic springs are optimized and re-designed to compensate for the weight of a weighing conveyor on the weighing cell. The checkweigher has a weighing repeatability of 23 mg (1σ) in static situation. Since there is no low-frequency resonance in our checkweigher that influences the dynamic weighing signal, we could measure the weight by using only a notch filter at high conveyor speeds. To determine the effective measurement time, a dynamic weighing process model is used. Finally, the proposed checkweigher meets Class XIII of OIML R51-1 of verification scale e 0.5 g at a conveyor speed of up to 2.7 m/s.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 465-478
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Checkweigher using an EMFC weighing cell with magnetic springs and air-bearings
Autorzy:
Lee, Hyun-Ho
Yoon, Kyung-Taek
Choi, Young-Man
Powiązania:
https://bibliotekanauki.pl/articles/1849051.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
checkweigher
magnetic spring
electromagnetic force compensation
Opis:
A dynamic weighing system or a checkweigher is an automated inspection system that measures the weight of objects while transferring them between processes. In our previous study, we developed a new electromagnetic force compensation (EMFC) weighing cell using magnetic springs and air bearings. This weighing cell is free from flexure hinges which are vulnerable to shock and fatigue and also eliminates the resonance characteristics and implements a very low stiffness of only a few N/m due to the nature of the Halbach array magnetic spring. In this study, we implemented a checkweigher with the weighing cell including a loading and unloading conveyor to evaluate its dynamic weighing performances. The magnetic springs are optimized and re-designed to compensate for the weight of a weighing conveyor on the weighing cell. The checkweigher has a weighing repeatability of 23 mg (1σ) in static situation. Since there is no low-frequency resonance in our checkweigher that influences the dynamic weighing signal, we could measure the weight by using only a notch filter at high conveyor speeds. To determine the effective measurement time, a dynamic weighing process model is used. Finally, the proposed checkweigher meets Class XIII of OIML R51-1 of verification scale e 0.5 g at a conveyor speed of up to 2.7 m/s.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 465-478
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Checkweigher using an EMFC weighing cell with magnetic springs and air-bearings
Autorzy:
Lee, Hyun-Ho
Yoon, Kyung-Taek
Choi, Young-Man
Powiązania:
https://bibliotekanauki.pl/articles/1849107.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
checkweigher
magnetic spring
electromagnetic force compensation
Opis:
A dynamic weighing system or a checkweigher is an automated inspection system that measures the weight of objects while transferring them between processes. In our previous study, we developed a new electromagnetic force compensation (EMFC) weighing cell using magnetic springs and air bearings. This weighing cell is free from flexure hinges which are vulnerable to shock and fatigue and also eliminates the resonance characteristics and implements a very low stiffness of only a few N/m due to the nature of the Halbach array magnetic spring. In this study, we implemented a checkweigher with the weighing cell including a loading and unloading conveyor to evaluate its dynamic weighing performances. The magnetic springs are optimized and re-designed to compensate for the weight of a weighing conveyor on the weighing cell. The checkweigher has a weighing repeatability of 23 mg (1σ) in static situation. Since there is no low-frequency resonance in our checkweigher that influences the dynamic weighing signal, we could measure the weight by using only a notch filter at high conveyor speeds. To determine the effective measurement time, a dynamic weighing process model is used. Finally, the proposed checkweigher meets Class XIII of OIML R51-1 of verification scale e 0.5 g at a conveyor speed of up to 2.7 m/s.
Źródło:
Metrology and Measurement Systems; 2021, 28, 3; 465-478
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and application of real-time compensation of positioning precision of the turntable with a harmonic function
Autorzy:
Zhou, Yi
Zhu, Weibin
Shu, Yi
Huang, Yao
Zou, Wei
Xue, Zi
Powiązania:
https://bibliotekanauki.pl/articles/2173885.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
harmonic function
positioning error
compensation
real-time
CORDIC
Opis:
In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54.21ʹʹ to 1.63ʹʹ, equivalent to 96.99% reduction in positioning error.
Źródło:
Metrology and Measurement Systems; 2022, 29, 3; 553--571
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A smart and distributed measurement system to acquire and analyze mechanical motion parameters
Autorzy:
Pereira Dias, J. M.
Viegas, V.
Postolache, O.
Silva Girão, P.
Powiązania:
https://bibliotekanauki.pl/articles/221645.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
measurement system
kinematic variables measurements
accelerometers
error compensation
accuracy
Opis:
This paper presents a low-cost and smart measurement system to acquire and analyze mechanical motion parameters. The measurement system integrates several measuring nodes that include one or more triaxial accelerometers, a temperature sensor, a data acquisition unit and a wireless communication unit. Particular attention was dedicated to measurement system accuracy and compensation of measurement errors caused by power supply voltage variations, by temperature variations and by accelerometers’ misalignments. Mathematical relationships for error compensation were derived and software routines for measurement system configuration, data acquisition, data processing, and self-testing purposes were developed. The paper includes several simulation and experimental results obtained from an assembled prototype based on a crank-piston mechanism.
Źródło:
Metrology and Measurement Systems; 2013, 20, 3; 465-478
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sideslip angle estimation of in-wheel motor drive electric vehicles by cascaded multi-Kalman filters and modified tire model
Autorzy:
Chen, Long
Chen, Te
Xu, Xing
Cai, Yingfeng
Jiang, Haobin
Sun, Xiaoqiang
Powiązania:
https://bibliotekanauki.pl/articles/220947.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
distributed drive electric vehicle
Kalman filter
error compensation
sideslip angle
Opis:
Reliable estimation of longitudinal force and sideslip angle is essential for vehicle stability and active safety control. This paper presents a novel longitudinal force and sideslip angle estimation method for four-wheel independent-drive electric vehicles in which the cascaded multi-Kalman filters are applied. Also, a modified tire model is proposed to improve the accuracy and reliability of sideslip angle estimation. In the design of longitudinal force observer, considering that the longitudinal force is the unknown input of the electric driving wheel model, an expanded electric driving wheel model is presented and the longitudinal force is obtained by a strong tracking filter. Based on the longitudinal force observer, taking into consideration uncertain interferences of the vehicle dynamic model, a sideslip angle estimation method is designed using the robust Kalman filter and a novel modified tire model is proposed to correct the original tire model using the estimation results of longitudinal tire forces. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 185-208
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A complex current ratio device for the calibration of current transformer test sets.
Autorzy:
Çayci, H.
Powiązania:
https://bibliotekanauki.pl/articles/221001.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
current transformer test set
ratio error
phase displacement
current comparator
compensation
Opis:
A practical method with high accuracy in generation and application of error values for calibration of current transformer test sets is described. A PC-controlled three-phase power source with a standard wattmeter is used for generating the nominal and error test currents while an electronically compensated current comparator is used to provide summation and subtraction of them, precisely. With this method, any ratio error and phase displacement values could be generated automatically and nominal and test currents could be grounded on the test set safely. Because of its high accurate ratio and phase error generating capability, any type of test set regardless of its operating principles could be calibrated.
Źródło:
Metrology and Measurement Systems; 2011, 18, 1; 159-164
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New approach to spindle thermal extension measuring based on machine vision for the vertical maching centre
Autorzy:
Su, Dongxu
Cai, Xin
Li, Yang
Zhao, Wanhuan
Zhang, Huijie
Powiązania:
https://bibliotekanauki.pl/articles/1849108.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Spindle thermal extension measuring
machine vision
Gaussian sub-pixel fitting
thermal error compensation
Opis:
When machine tool spindles are running at a high rotation speed, thermal deformation will be introduced due to the generation of large amounts of heat, and machining accuracy will be influenced as a result, which is a generalized issue in numerous industries. In this paper, a new approach based on machine vision is presented for measurements of spindle thermal error. The measuring system is composed of a Complementary Metal-Oxide-Semiconductor (CMOS) camera, a backlight source and a PC. Images are captured at different rotation angles during end milling process. Meanwhile, the Canny edge detection and Gaussian sub-pixel fitting methods are applied to obtain the bottom edge of the end mill which is then used to calculate the lowest point coordinate of the tool. Finally, thermal extension of the spindle is obtained according to the change of the lowest point at different time steps of the machining process. This method is validated through comparison with experimental results from capacitive displacement sensors. Moreover, spindle thermal extension during the processing can be precisely measured and used for compensation in order to improve machining accuracy through the proposed method.
Źródło:
Metrology and Measurement Systems; 2021, 28, 2; 357-370
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new optical frequency transfer method via fibre based on active phase noise compensation with single acousto-optic modulator
Autorzy:
Wang, Guoyong
Yao, Yuanbo
Yan, Tao
Bian, Lang
Meng, Yansong
Powiązania:
https://bibliotekanauki.pl/articles/221592.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acousto-optic modulator
optical frequency transfer over fibre
phase noise compensation
relative frequency stability
Opis:
In this paper, we propose and experimentally demonstrate a new method for optical frequency transfer over fibre. Instead of dual acousto-optic modulators (AOMs) as adopted in the traditional fibre phase noise compensation setup, here an active fibre phase noise compensation scheme with a single acousto-optic modulator (AOM) is used. The configuration simplifies the equipment of the user end while maintaining a high-performance optical frequency transfer stability. We demonstrate an actively stabilized coherent transfer at an optical frequency of 193.55THz over 10-km spooled fibre, obtaining a relative frequency stability (Allan deviation) of 3.84 x 10-16/1 s and 4.08 x 10-18/104 s, which is improved by about 2~3 orders of magnitude in comparison with the one without any phase noise compensation that achieves a relative frequency stability of 1.81 x 10-14/1 s and 2.48 x 10-15/104 s.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 115-124
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies