Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "handwritten text" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Lexicon and attention based handwritten text recognition system
Autorzy:
Kumari, Lalita
Singh, Sukhdeep
Rathore, Vaibhav Varish Singh
Sharma, Anuj
Powiązania:
https://bibliotekanauki.pl/articles/2201262.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Instytut Informatyki Technicznej
Tematy:
handwriting recognition
deep learning
word beam search
attention
neural network
lexicon
Opis:
The handwritten text recognition problem is widely studied by the researchers of computer vision community due to its scope of improvement and applicability to daily lives. It is a sub-domain of pattern recognition. Due to advancement of computational power of computers since last few decades neural networks based systems heavily contributed towards providing the state-of-the-art handwritten text recognizers. In the same direction, we have taken two state-of-the art neural networks systems and merged the attention mechanism with it. The attention technique has been widely used in the domain of neural machine translations and automatic speech recognition and now is being implemented in text recognition domain. In this study, we are able to achieve 4.15% character error rate and 9.72% word error rate on IAM dataset, 7.07% character error rate and 16.14% word error rate on GW dataset after merging the attention and word beam search decoder with existing Flor et al. architecture. To analyse further, we have also used system similar to Shi et al. neural network system with greedy decoder and observed 23.27% improvement in character error rate from the base model.
Źródło:
Machine Graphics & Vision; 2022, 31, 1/4; 75--92
1230-0535
2720-250X
Pojawia się w:
Machine Graphics & Vision
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Attention-based deep learning model for Arabic handwritten text recognition
Autorzy:
Aïcha Gader, Takwa Ben
Echi, Afef Kacem
Powiązania:
https://bibliotekanauki.pl/articles/2201264.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Instytut Informatyki Technicznej
Tematy:
Arabic handwriting recognition
attention mechanism
BLSTM
CNN
CTC
RNN
Opis:
This work proposes a segmentation-free approach to Arabic Handwritten Text Recog-nition (AHTR): an attention-based Convolutional Neural Network - Recurrent Neural Network - Con-nectionist Temporal Classification (CNN-RNN-CTC) deep learning architecture. The model receives asinput an image and provides, through a CNN, a sequence of essential features, which are transferred toan Attention-based Bidirectional Long Short-Term Memory Network (BLSTM). The BLSTM gives features sequence in order, and the attention mechanism allows the selection of relevant information from the features sequences. The selected information is then fed to the CTC, enabling the loss calculation and the transcription prediction. The contribution lies in extending the CNN by dropout layers, batch normalization, and dropout regularization parameters to prevent over-fitting. The output of the RNN block is passed through an attention mechanism to utilize the most relevant parts of the input sequence in a flexible manner. This solution enhances previous methods by improving the CNN speed and performance and controlling over model over-fitting. The proposed system achieves the best accuracy of97.1% for the IFN-ENIT Arabic script database, which competes with the current state-of-the-art. It was also tested for the modern English handwriting of the IAM database, and the Character Error Rate of 2.9% is attained, which confirms the model’s script independence.
Źródło:
Machine Graphics & Vision; 2022, 31, 1/4; 49--73
1230-0535
2720-250X
Pojawia się w:
Machine Graphics & Vision
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies