Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy logic system" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Fuzzy logic-decision-making system dedicated to evaluation of logistics project effectiveness
Rozmyty system podejmowania decyzji dedykowany ocenie skuteczności realizacji projektów logistycznych
Autorzy:
Pisz, I.
Łapuńka, I.
Powiązania:
https://bibliotekanauki.pl/articles/361880.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
project
logistics project
performance
effectiveness
efficiency
project success
fuzzy system
fuzzy decision-making system
fuzzy logic
MATLAB software system
projekt
projekt logistyczny
efektywność
skuteczność
sprawność
sukces projektu
system rozmyty
system podejmowania decyzji
logika rozmyta
system MATLAB
Opis:
Background: Project effectiveness is synonymous with project success. It is measured or assessed in terms of the degree to which project objectives are achieved. This paper presents an approach to evaluating the effectiveness of logistics projects. The starting point is the analysis of the current state of knowledge in the area of assessing project effectiveness, including logistics projects. The purpose of the study was to identify the critical factors determining the success of logistics projects and develop a model of logistics project effectiveness. Methods: The paper is based on the available recent scientific-theoretical research and publications and on practical studies in 25 enterprises seated in Poland. The study carried out by the authors had the form of questionnaires. The authors used a case study to validate the model of fuzzy decision-making system dedicated to estimate the level of logistics project effectiveness. Results: Based on a literature review and research findings, the authors propose the key success factors for logistics project effectiveness. In the paper the authors propose an approach to measure the level of logistics project effectiveness using their model based on fuzzy logic. This model laid the foundations for a fuzzy decision-making system in MATLAB environmental. The paper describes the implementation of the model via a case study. Conclusions: This approach allows for a more detailed description of logistics project effectiveness. The proposed model may be implemented by logisticians in an enterprise and/or supply chain. The approach can be useful to assess the level to which logistics project objectives are achieved - logistics project effectiveness.
Wstęp: Efektywność projektu jest często utożsamiana z sukcesem projektu. Praca podejmuje zagadnienia związane z pomiarem i oceną skuteczności projektów, w tym przypadku projektów logistycznych. Autorzy dokonali analizy literatury tematu. Wyodrębnili kluczowe mierniki sukcesu projektów logistycznych. Na bazie przeprowadzonych badań zbudowano model skuteczności projektów logistycznych, który następnie zaimplementowano w systemie MATLAB. Metody: Praca została przygotowana w oparciu o dostępne badania zarówno teoretyczne, jak i praktyczne. Przeprowadzono badania ankietowe w 25 przedsiębiorstwach w Polsce. Wykorzystano studium przypadku celem ilustracji podjętego problemu. Rezultaty: Przygotowano zestaw mierników umożliwiających dokonanie oceny stopnia skuteczności realizacji celów projektów. Przygotowano model umożliwiający pomiar i ocenę skuteczności działań projektowych, który wykorzystuje logikę rozmytą. Opracowany model został zaimplementowany w systemie MATLAB. Wnioski: Proponowane podejście umożliwia opis problemu pomiaru i oceny skuteczności realizacji projektów logistycznych. Zaproponowane podejście może zostać wykorzystane przez logistyków, menedżerów projektów w ocenie skuteczności działań podejmowanych przez nich projektów logistycznych.
Źródło:
LogForum; 2016, 12, 3; 199-213
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of a hybrid model of the expert system for assessing the potentiality of manufacturing the assumed quantity of wire harnesses
Hybrydowy model eksperckiego systemu oceny stabilności systemu produkcyjnego
Autorzy:
Burduk, Anna
Grzybowska, Katarzyna
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/361998.pdf
Data publikacji:
2019
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
production system
risk assessment
artificial neural networks
fuzzy logic
stability
variability
system produkcji
ocena ryzyka
sztuczne sieci neuronowe
logika rozmyta
stabilność
zmienność
Opis:
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem - możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego - jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
Background: Control plays the main role in ensuring the stability of production processes, while digital models of processes and methods of artificial intelligence are used more and more commonly in it. Production of highly diversified items in small lots at low inventory levels is characterised by a much lower stability as compared with largelot manufacturing. Additionally, innovations created for items or processes result in disturbances to current work. Although this turbulence is usually momentary, it may lead to a loss of function or manufacturing stability, which in turn translates into financial losses, as well as losing customers. This paper presents the potential of using simulation models and artificial neural network models to assess the stability of a reorganized production system. Methods: The problem analysed in the paper is that of merging a simulation model with an ANN model by designing a hybrid model. A direct connection of both types of models is not possible due to their various structures, specificity, and different purposes, as well as the various types of input and output data. Therefore, the idea of merging these two types of models through an expert knowledge base and fuzzy inference was proposed. The results from the simulation model and the ANN model were used to gather the knowledge on the production system being analysed. It has been proposed that the output from the simulation model provided knowledge of the risk level, while the output from the ANN model provided knowledge of process stability. Results: The paper presents the idea of projecting a hybrid model of the expert system in order to assess the stability of a reorganized production system. A model of a hybrid expert system was developed to assess the potential of executing the assumed production plans. The level of risk and the level of stability determined by the simulation model and the ANN model are entered into the system. The output from the expert model is the value of the variable determining the potential of achieving the goal. In the construction of the model, fuzzy inference was used, which uses linguistic variables and is characterized by a knowledge system in the form of fuzzy rules "if ... then ...". For both the independent variable and for the dependent variable, a set of membership functions representing accepted linguistic variables was proposed, and then decision rules were determined. The idea of merging simulation models with ANN models was tested on a practical example in production system that manufactures products for dishwashers. Conclusions: The potentiality to execute production plans depending on the level of risk and the level of stability of the production system is too complicated to be modelled mathematically, but based on the analysis of data from the simulation and ANN models, it is possible to obtain information concerning the relations between corresponding input and output values.
Źródło:
LogForum; 2019, 15, 4; 459-473
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid model of an expert system for assessing the stability of a production system
Hybrydowy model eksperckiego systemu oceny stabilności systemu produkcyjnego
Autorzy:
Burduk, A.
Grzybowska, K.
Kovács, G.
Powiązania:
https://bibliotekanauki.pl/articles/362325.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
production system
risk assessment
artificial neural networks
fuzzy logic
stability
variability
system produkcji
ocena ryzyka
sieci neuronowe sztuczne
logika rozmyta
stabilność
zmienność
Opis:
Background: The article presents the concept of control of the production system, which allows to maintain its stability, and thus to implement the established production plans. For this purpose, combinations of simulation models and artificial neural network (ANN) models of the production system have been suggested. The combination of both types of models was possible thanks to the development of a hybrid model of the expert system to assess the possibility of implementing the production plan (objective) depending on the risk size and the level of stability of the production system analysed. The analysed problem - the possibility of implementing production plans depending on the risk size and the level of stability of the production system - is difficult to mathematical modelling. However, based on the data analysis from the simulation model and the ANN model, we can obtain information on the dependences of the corresponding input and output values. Methods: Based on the presented method of managing the production process using computer models, the possibilities of using simulation models and ANN models in assessing the stability and risk of production systems have been analysed. The analysis and comparison of both types of models have been performed due to the construction and the type of input and output data. Results: The direct combination of simulation models and ANN models is not allowed by their different structure, specificity and other types of input and output data. Therefore, the concept of combination of both types of models presented in the article is conducted via a database of expertise and fuzzy inference. Conclusions: For the purpose of controlling the production system, it was suggested to build a hybrid model of an expert system to assess the possibility of achieving the objective depending on the risk size and the level of stability of the production systems.
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem – możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego – jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
Źródło:
LogForum; 2018, 14, 4; 507-518
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies