Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Climate Change" wg kryterium: Temat


Tytuł:
Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of crop plants
Autorzy:
Sharma, Shubhangani
Sharma, Jyotshana
Soni, Vineet
Kalaji, Hazem M.
Elsheery, Nabil I.
Powiązania:
https://bibliotekanauki.pl/articles/1844317.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
antioxidants
cellular metabolites
climate change
photosynthesis
waterlogging
Opis:
The natural environment is being drastically affected by climate change. Under these severe environmental conditions, the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the morphological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging will facilitate the development of techniques and methods to improve tolerance in crops.
Źródło:
Journal of Water and Land Development; 2021, 49; 16-28
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Climate-neutral waste management in The Russian Federation: New approach to sludge treatment on drying beds under climate change
Autorzy:
Dregulo, Andrey Mikhailovich
Powiązania:
https://bibliotekanauki.pl/articles/2073725.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
drying bed
precipitations
sludge treatment
Opis:
Identification and ecological diagnostics of the influence of basic load parameters (the cumulative effect of air temperature, the amount of precipitation) is a fundamental aspect of the wastewater sludge treatment at drying beds. The positive dynamics of atmospheric precipitation and the long-term functioning of natural and technical systems for wastewater sludge treatment under the influence of excessive atmospheric moisture does not allow the treatment/drying of precipitation, which provokes soil pollution with subsequent diffusion of pollutants into groundwater, which leads to the degradation of the natural environment components interacting with drying beds. The article is devoted to the adaptation of the process of treatment/drying of wastewater sludge at drying beds. The method includes identification of the dynamics of climatic factors of a long-term chronological series, which makes it possible to predict the effect of atmospheric precipitation on the wastewater sludge drying. The costs for the implementation and subsequent use of the proposed method are absent or insignificant (in the conditions of an increase in usable area during the modernisation of existing drying beds) in comparison with the costs of well-known and widespread methods of deliquefaction.
Źródło:
Journal of Water and Land Development; 2022, 52; 95--100
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Farmers’ perception of climate change and gender sensitive perspective for optimised irrigation in a compound surface-ground water system
Autorzy:
Dawit, Meseret
Dinka, Megersa Olumana
Halefom, Afera
Powiązania:
https://bibliotekanauki.pl/articles/2073745.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
agriculture
climate change
gender perspective
water use
Opis:
Water is becoming a scarce resource due to the immense intensification of agricultural activity, climate change, and demographic pressure. Hence, information on water use/management and their associated management practices is essential for selecting, planning, implementing, and monitoring schemes that optimise water use to meet the increasing demand related to basic human needs and welfare. This study presents the farmers’ perception of climate change from a gender sensitive perspective to promote adaptation and optimise irrigation/agricultural productivity in a compound surface-ground water system within the Anger sub-basin (Ethiopia). The study results showed that climate change affects water demand and supply routes in which more than 65% of the decrease in lake water level is due to climate change and overuse of surface water. The research findings show that women’s recognition and apprehension of climate change is much greater than men’s. Thus, women’s role in farming is important for ensuring food security at the household level. Gender sensitivity and can play a role in preventing the change in climate through optimising irrigation efficiency and suggesting the need for further research on its application to science. The study demonstrates that women’s participation in agricultural tasks, crisis management, and informal institutions is more vigorous than men’s. On the other hand, the understanding and communication of farmers is based on experience and concerns about the climate impact. Moreover, studies showed that climate change has a potential impact on the access to water supply for agriculture, urbanisation, and the environment. Therefore, there is a need to assess the dynamics of surface-groundwater interaction as affected by climate change and gender inequality to optimise the irrigation system.
Źródło:
Journal of Water and Land Development; 2022, 52; 265--271
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The retrospective monitoring of soils under conditions of climate change in the Trans-Ural region (Russia)
Autorzy:
Suleymanov, Azamat
Gabbasova, Ilysja
Suleymanov, Ruslan
Komissarov, Mikhail
Garipov, Timur
Sidorova, Ludmila
Nazyrova, Fliza
Powiązania:
https://bibliotekanauki.pl/articles/2174327.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
monitoring
soil fertility
Trans-Ural
Opis:
Global climate change is a fact that affects all components of the environment. The main aim of this research was to conduct the retrospective monitoring of soils in the Trans-Ural Steppe Zone (Russia) and the analysis in changing of key climatic parameters for the periods 1937-1982 and 1982-2019. We investigated average temperatures and precipitation (monthly and annual) using archived data from a nearby weather station, as well as data from NASA and weather forecast websites. We identified a decrease of soil fertility and an increase in alkalinisation processes over the past 37 years for the studied area. Comparison of these periods showed an increasing the average monthly and annual air temperatures (on 1.4°C) and a decrease in the amount of precipitation in the summer (on 4.4 mm) period. We found that a more arid climate accelerates the rate of soil salinization due to the active evaporation of groundwater. Nevertheless, in some areas there were found the soil desalinization due to the change in the hydrologic regime and lowering of the groundwater level. In general, the climate changing in the studied region is consistent with global warming trend. Increased average annual temperature and reduced precipitation in summer period contribute to aridization of the region. Such conditions will more restrict soil fertility due to development of salinization and desertification processes.
Źródło:
Journal of Water and Land Development; 2022, 55; 84--90
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessing the impact of climate change on water resources of upper Awash River sub-basin, Ethiopia
Autorzy:
Heyi, Eshetu Ararso
Dinka, Megersa Olumana
Mamo, Girma
Powiązania:
https://bibliotekanauki.pl/articles/2073754.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
downscaling
emission scenarios
hydrological modelling
Opis:
This study tried to assess the impact of climate change on water resources of the upper Awash River sub-basin (Ethiopia) using a statistical downscaling model (SDSM). The future climatic parameters (rainfall, maximum and minimum temperatures) were generated by downscaling outputs of HadCM3 (Hadley Centre Coupled Model, version 3) general circulation model to watershed level for A2a (medium-high) and B2a (medium-low) emission scenarios at representative stations (Addis Ababa, Ginchi and Bishoftu). These SDSM generated climatic data were used to develop current/baseline period (1971-2010) and future climate change scenarios: 2020s (2011-2040), 2050s (2041-2070) and 2080s (2071-2099). The projected future rainfall and mean monthly potential evapotranspiration at these stations were weighted and fed to HBV hydrological model (Hydrologiska Byråns Vattenbalansavdelning model) for future stream flow simulation. These simulated future daily flow time series were processed to monthly, seasonal and annual time scales and the values were compared with that of base period for impact assessment. The simulation result revealed the possibility for significant mean flow reductions in the future during Summer or “Kiremt” (main rainy season) and apparent increase during “Belg” or winter (dry season). Autumn flow volume showed decreasing trend (2020s), but demonstrated increasing trend at 2050s and 2080s. A mean annual flow reduction (ranging from 13.0 to 29.4%) is also expected in the future for the three studied benchmark periods under both emission scenarios. Generally, the result signals that the water resources of upper Awash River basin will be expected to be severely affected by the changing climate. Therefore, different adaptation options should be carried out in order to reduce the likely impact and ensure water security in the sub-basin.
Źródło:
Journal of Water and Land Development; 2022, 52; 232--244
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Review of impacts of climate changes on the urban water security of Islamabad, Pakistan
Autorzy:
Shah, Attaullah
Karim, Rehmat
Ali, Karamat
Powiązania:
https://bibliotekanauki.pl/articles/2174336.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
global warming
Islamabad
urban water
Opis:
The global warming and subsequent climate change has seriously threatened the glaciers of the Hindukush Karakoram Himalaya (HKH) region. These glaciers provide water to more than 60% people of the 11 countries, including Pakistan. The capital city of Pakistan has witnessed unprecedented urbanisation, population increase, development of new townships and associated economic activities. These challenges, together with climate change, have created severe pressure on the water resources of the city. In this mixed mode research, including questionnaire survey of 20 questions was distributed among the residents of the city online through Google Form. The questions were related to the expected impact of climate change on the availability of water, measures for conservation of water etc. About 205 residents from various parts of the city with different demographic backgrounds responded. This was followed by Focus Group Discussions (FDGs) of the experts and the major challenges to the urban water security of Islamabad with special reference to climate change have been assessed. The research has revealed that the water resources of the city are highly unsustainable. The residents have high concerns about the availability and quality of water. The results have shown that there is a number of governance issues in water distribution systems of the city. There are no organized water conservation strategies employed by City Government. The lack of institutional and policy framework has further complicated the situation. Residents seem willing for metering of water for its conservation. Recommendations have been made to municipal authorities for rational water resource management of the city.
Źródło:
Journal of Water and Land Development; 2022, 54; 109--115
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Expected development of irrigation in Poland in the context of climate change
Przewidywany rozwój nawodnień w Polsce w kontekście zmian klimatu
Autorzy:
Łabędzki, L.
Powiązania:
https://bibliotekanauki.pl/articles/292958.pdf
Data publikacji:
2009
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
nawodnienia
susza
zmiany klimatu
climate change
drought
irrigation
Opis:
Uncertainties as to how the climate will change and how it will influence the necessities and trends of irrigation development lead to a number of serious questions to be answered in the near future. How irrigation and water systems will have to adapt to climate changes is a challenge that planners, designers and O&M services will have to cope with. It is widely accepted that air temperature in Poland will increase of 2-4°C, however a total yearly precipitation will not vary yet its pattern during the year may change towards higher in winter and lower in summer. Evapotranspiration and crop water demand may rise due to both an increase in temperature and duration of crop growth cycles. Three main factors are expected to exert an accelerating influence on the development of irrigation: increased frequency and intensity of droughts and long-lasting precipitation-free periods with the high insolation and high air temperatures resulting from climate change; the intensification of agricultural production (e.g. in horticulture, orchards, seed crops), being forced by both domestic and European free-market competition; the necessity of reaching high level of quality for the majority of agricultural products. To mitigate negative effects of climate change and extreme events, appropriate adaptation methods and adaptation strategies should be developed and implemented in existing irrigation and water control systems. A number of technological and organisational steps should be taken to improve operation, management, administration and decision making processes.
Zmiany klimatu będą wywierać silny wpływ na rolnictwo. Przeważa pogląd, że w skali ogólnej spodziewane zmiany, polegające na globalnym ociepleniu, przyniosą korzystne efekty w gospodarce rolnej, bowiem zwiększy się potencjał produkcyjny rolnictwa. W Polsce należy się spodziewać wzrostu temperatury o ok. 2-4°C. Konsekwencją tego wzrostu będą sezonowe zmiany ilościowe opadów atmosferycznych i natężenie ekstremalnych zjawisk pogodowych. Większość scenariuszy dla Polski nie przewiduje wzrostu sumy opadów w ciągu roku. Można natomiast spodziewać się wzrostu opadów zimowych, a zmniejszenia opadów letnich. Spowoduje to nadmierne uwilgotnienia gleby w okresie wczesnowiosennym i potrzebę odprowadzenia tej wody przez systemy drenarskie oraz przesuszenie gleb w okresie letnim i potrzebę nawodnień. Przewidywany wzrost natężenia i częstotliwości występowania susz może spowodować wzrost deficytów wody w rolnictwie. Susze stają się w ostatnich latach coraz bardziej dokuczliwe, a przesuszenie wielu obszarów jest wyraźne. Jednocześnie dopuszcza się do bardzo głębokiego kryzysu nawodnień w Polsce. Obecnie nawodnienia w Polsce odgrywają znikomą rolę zarówno w produkcji rolnej, jak i gospodarce wodnej. Są stosowane zaledwie na ok. 0,5% powierzchni użytków rolnych (łącznie wszystkie rodzaje nawodnień). Możliwe zwiększenie deficytów wody w rolnictwie w wyniku zmian klimatu może utrwalić obecne trendy rozwoju nawodnień. Znaczenie nawodnień w polskim rolnictwie powinno się zwiększać wraz z intensyfikacją rolnictwa i negatywnymi skutkami zmian klimatu.
Źródło:
Journal of Water and Land Development; 2009, no. 13b; 17-29
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The analysis of spatial variability of precipitation in Poland in the multiyears 1981–2010
Autorzy:
Grzywna, Antoni
Bochniak, Andrzej
Ziernicka-Wojtaszek, Agnieszka
Krużel, Joanna
Jóźwiakowski, Krzysztof
Wałęga, Andrzej
Ciupak, Agnieszka
Mazur, Andrzej
Obroślak, Radomir
Serafin, Artur
Powiązania:
https://bibliotekanauki.pl/articles/292589.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
kriging
Polska
precipitation
spatial variability
water resources
Opis:
The purpose of the paper is to analyze the spatial variability of precipitation in Poland in the years 1981–2010. The average annual rainfall was 607 mm. Precipitation in Poland is characterized by high spatial and temporal variability. The lowest annual precipitation was recorded in the central part of the country, where they equaled 500 mm. The highest annual precipitation totals were determined in the south, equaling 970 mm. The average precipitation in the summer half-year is 382 mm (63% of the annual total). On the basis of data from 53 climate stations, maps were made of the spatial distribution of precipitation for the period of the year and winter and summer half-year. The kriging method was used to map rainfall distribution in Poland. In the case study, cross-validation was used to compare the prediction performances of three periods. Kriging, with exponential type of semivariogram, gave the best performance in the statistical sense. Their application is justices especially in areas where landform is very complex. In accordance with the assumptions, the mean prediction error (ME), mean standardized prediction error (MSE), and root mean-square standardized prediction error (RMSSE) values are approximately zero, and root-mean-square prediction error (RMSE) and average standard error (ASE) reach values well below 100.
Źródło:
Journal of Water and Land Development; 2020, 46; 105-111
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Techno-socio-economic analysis of fog-to-water solution for climate change hazard area: Sumba Island, Indonesia
Autorzy:
Ismail, Zaitizila
Go, Yun Ii
Karuniasa, Mahawan
Powiązania:
https://bibliotekanauki.pl/articles/1844362.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
fog collector
hazard
Southeast Asia
water scarcity
Opis:
The global demand for water has been growing rapidly in the last decade with a global population growth rate of 1.1% p.a., which is equivalent to 81 million people per year. Southeast Asian countries are facing severe water scarcity challenge due to their location in the tropics. In 2018, the Sumba Island experienced the highest temperature of 36°C and lesser rainfall of 911.1 mm3 per year and it was classified as a long dry island prone to drought due to dry winds from Australian desserts. This paper focuses on the perceived effect of water scarcity on livelihoods in the Mandahu Village, Indonesia, due to climate change. Sampling and survey covered rural households and the findings showed that the average household of 4 to 8 people consumed around 250 dm3 of water per day. The community relied on two main sources of clean water from two main springs. However, the prolonged dry season from May until December every year results in major challenges to access water and eventually affect the agricultural productivity. Hence, the feasibility of the fog collection technology has been investigated from technological, economic and social points of view as a reliable and cost-effective source of water. The outcome of this work will produce a feasibility statement for fog-to-water as an alternative solution counteracting water scarcity in the Sumba Island, a solution which can be replicated in other climate change stricken hot spots in Southeast Asia.
Źródło:
Journal of Water and Land Development; 2021, 48; 172-181
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of global warming on insect behaviour in agriculture
Autorzy:
Ahmed, Alim Al Ayub
Zahar, Marziah
Gribkova, Vera
Nikolaeva, Natalia
Dwijendra, Ngakan Ketut Acwin
Suksatan, Wanich
Atiyah, Karrar Kamil
Jalil, Abduladheem Turki
Aravindhan, Surendar
Powiązania:
https://bibliotekanauki.pl/articles/2174340.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
agriculture
climate change
food security
global warming
insect pest
Opis:
Global warming and climate change are some of the most widely discussed topics in today's society, and they are of considerable importance to agriculture globally. Climate change directly affects agricultural production. On the other hand, the agricultural sector is inherently sensitive to climate conditions, and this has made the agricultural sector one of the most vulnerable sectors to the effects of global climate change. Rising CO2 levels in the atmosphere, increased temperature, and altering precipitation patterns all substantially influence agricultural insect pests and agricultural productivity. Climate change has a number of implications for insect pests. They can lead to a decreased biological control effectiveness, particularly natural enemies, increased incidence of insect-transmitted plant diseases, increased risk of migratory pest invasion, altered interspecific interaction, altered synchrony between plants and pests, increase in the number of generations, increased overwintering survival, and increase in geographic distribution. As a consequence, agricultural economic losses are a real possibility, as is a threat to human food and nutrition security. Global warming will necessitate sustainable management techniques to cope with the altering state of pests, as it is a primary driver of pest population dynamics. Future studies on the impacts of climate change on agricultural insect pests might be prioritized in several ways. Enhanced integrated pest control strategies, the use of modelling prediction tools, and climate and pest population monitoring are only a few examples.
Źródło:
Journal of Water and Land Development; 2022, 54; 150--153
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting the impact of climate change and the hydrological response within the Gurara reservoir catchment, Nigeria
Autorzy:
Oseke, Francis Ifie-emi
Anornu, Geophery Kwame
Adjei, Kwaku Amaning
Eduvie, Martin Obada
Powiązania:
https://bibliotekanauki.pl/articles/2048507.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
climate change
Gurara reservoir catchment
hydrology
modelling
water availability
Opis:
The 2150 km2 transboundary Gurara Reservoir Catchment in Nigeria was modelled using the Water Evaluation and Planning tool to assess the hydro-climatic variability resulting from climate change and human-induced activities from 1989 to 2019 and projected to the future till 2050. Specifically, the model simulated the historic data set and predicted the future runoff. The initial results revealed that monthly calibration/validation of the model yielded acceptable results with Nash–Sutcliff efficiency (NSE), percent bias (PBIAS), and coefficient of determination (R2) values of 0.72/0.69, 0.72/0.67 and 4.0%/1.0% respectively. Uncertainty was moderately adequate as the model enveloped about 70% of the observed runoff. Future predicted runoffs were modelled for climate ensembles under three different representative concentration pathways (RCP4.5, RCP6.5 and RCP8.5). The RCP projections for all the climate change scenarios showed increasing runoff trends. The model proved efficient in determining the hydrological response of the catchment to potential impacts from climate change and human-induced activities. The model has the potential to be used for further analysis to aid effective water resources planning and management at catchment scale.
Źródło:
Journal of Water and Land Development; 2021, 51; 129-143
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fluorescence parameters of chlorophyll a halophytes as a response to salinity of post mining subsidence reservoirs
Autorzy:
Sierka, Edyta
Bujok, Michał
Stalmachova, Barbara
Horaczek, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2203574.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
chlorophyll a fluorescence
climate change
halophyte
Najas marina
salinity
Opis:
The increasing salinity of water in reservoirs is caused by climate change. On the other hand, an increase in salinity promotes the group species, halophytes that tolerate or need NaCl for growth. The aim of this study was to identify the response of facultative halophytes’ photosynthetic apparatus efficiency (PE) to water salinity. The study covered the spiny water nymph (Najas marina L.) population in four mining subsidence reservoirs. Najas marina is a facultative halophyte which means that it can occur in both fresh and salt water. This plant has the characteristics of the species invasive, such as rapid biomass growth, and wide ecological tolerance. Water salinity, described by conductivity, in the reservoirs ranged from 646 to 3061 μS∙cm -1. PE was expressed in terms of chlorophyll a fluorescence parameters, which were collected in situ using a Pocket PEA device. Water parameters using a YSI ProDSS probe were identified. Data analysis was performed using OJIP test and s the non-parametric Spearman’s rank test (p ≤ 0.05). The relationship between chlorophyll a fluorescence parameters and water parameters showed that conductivity, salinity, water clarity, and nitrate content statistically significantly affected PE (p <0.05). Generally, the higher salinity e.g. more than 3000 μS∙m -1, supports PE of facultative halophyte at the stage of optimum development in the vegetation season.
Źródło:
Journal of Water and Land Development; 2022, Special Issue; 164--170
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Response of potato biomass and tuber yield under future climate change scenarios in Egypt
Autorzy:
Dewedar, Osama
Plauborg, Finn
El-Shafie, Ahmed
Marwa, Abdelbaset
Powiązania:
https://bibliotekanauki.pl/articles/1844307.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
AquaCrop model
biomass
climate change
CMIP5 scenarios
potato
yield
Opis:
FAO AquaCrop model ver. 6.1 was calibrated and validated by means of an independent data sets during the harvesting seasons of 2016/2017 and 2017/2018, at El Noubaria site in western north of Egypt. To assess the impact of the increase in temperature and CO2 concentration on potato biomass and tuber yield simulations, experiments were carried out with four downscaled and bias-corrected of General Circulation Models (GCMs) data sets based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5) scenarios under demonstrative Concentration Trails (RCPs) 4.5 and 8.5, selected for 2021–2040 and 2041–2060. The study showed that the model could satisfactorily simulate potato canopy cover, biomass, harvest and soil water content under various irrigation treatments. The biomass and yield decreased for all GCMs in both future series 2030s and 2050s. Biomass reduction varied between 5.60 and 9.95%, while the reduction of the simulated yield varied between 3.53 and 7.96% for 2030. The lowest values of biomass and yield were achieved by HadGEM2-ES under RCP 8.5 with 27.213 and 20.409 Mg∙ha–1, respectively corresponding to –9.95 and –7.96% reduction. The lowest reductions were 5.60 and 3.53% for biomass and yield, respectively, obtained with MIROC5 under RCP 8.5 for 2030. Reductions in biomass and yield in 2050 were higher than in 2030. The results are showing that higher temperatures shortened the growing period based on calculated growing degree days (GDD). Therefore, it is very important to study changing sowing dates to alleviate the impact of climate change by using field trials, simulation and deep learning models.
Źródło:
Journal of Water and Land Development; 2021, 49; 139-150
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The form of the floating house in the Czerniakowski Port in Warsaw
Autorzy:
Mazur, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/292562.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
amphibious architecture
architecture in Warsaw
architecture of climate change
floating house
Opis:
The article discusses the architectural expression of houses built on water, based on the design process of the floating house in the Czerniakowski Port in Warsaw, designed by Mai Bui Ngoc and Rafał Mazur. The question of the form of the floating house was the starting point of the work on this project. Usually buildings are designed in a specific location, which gives architects an inspiration for the design of the new form. In the case of the floating houses the goal was to make a universal artefact as a car or a phone. This artefact should be more connected to the owner than to the landscape. This artefact should be also neutral to the landscape and it should not be destructive for the surroundings. The answer lays between two archetypes; a typical house and a boat. Analysis of the existing floating houses gave the conclusion that authors of these houses were usually very close to one of these two archetypes. It is a need to put a lot of effort to design an object which does not remind a real house and a yacht design.
Źródło:
Journal of Water and Land Development; 2020, 45; 207-211
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Climate change-oriented design: Living on the water. A new approach to architectural design
Autorzy:
Januszkiewicz, Krystyna
Gołębiewski, Jakub I.
Powiązania:
https://bibliotekanauki.pl/articles/1844402.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
architecture
climate change
design
environment
floating cities
parametric architecture
water urbanism
Opis:
The paper deals with the digital architecture concept which is trying to introduce a new spatial language into the context of water urbanism, using nature as a model, measure and mentor. The first part analyses Biomimetics with its design strategies and methods. The Problem-Based Approach (designers look to nature for solutions) and the Solution-Based Approach (biological knowledge influences human design) are defined here. In the second part of the research, the authors present selected examples to the topic. This case study has demonstrated that a new approach to architectural design is emerging. This approach redefines the process of architectural design, understood not as the traditional shaping of the object's form, but as a compilation of various factors resulting from changeable climate characteristics and ecology. The conclusions emphasize that not only the contemporary understanding of ecology should be changed, but also the way architects approach the built environment, especially in the aquatic environment.
Źródło:
Journal of Water and Land Development; 2020, 47; 96-104
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies