Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Abdelkader, Mohamed" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Estimation of standard duration maximum rainfall by using regression models
Autorzy:
Yerdelen, Cahit
Asikoglu, Ömer Levend
Abdelkader, Mohamed
Eris, Ebru
Powiązania:
https://bibliotekanauki.pl/articles/1841938.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Eastern Black Sea Region
Marmara Region
regression model
standard duration maximum rainfall
temporal distribution of maximum daily rainfall
Opis:
Gauging stations of meteorological networks generally record rainfall on a daily basis. However, sub-daily rainfall observations are required for modelling flood control structures, or urban drainage systems. In this respect, determination of temporal distribution of daily rainfall, and estimation of standard duration of rainfall are significant in hydrological studies. Although sub-daily rainfall gauges are present at meteorological networks, especially in the developing countries, their number is very low compared to the gauges that record daily rainfall. This study aims at developing a method for estimating temporal distribution of maximum daily rainfall, and hence for generating maximum rainfall envelope curves. For this purpose, the standard duration of rainfall was examined. Among various regression methods, it was determined that the temporal distribution of 24-hour rainfall successfully fits the logarithmic model. The logarithmic model’s regression coefficients (named a and b) were then linked to the geographic and meteorological characteristics of the gauging stations. The developed model was applied to 47 stations located at two distinct geographical regions: the Marmara Sea Region and Eastern Black Sea Region, Turkey. Various statistical criteria were used to test the method's accuracy, and the proposed model provided successful results. For instance, the RMSE values of the regression coefficients a and b in Marmara Regions are 0.004 and 0.027. On the other hand, RMSE values are 0.007 and 0.02 for Eastern Black Sea Region.
Źródło:
Journal of Water and Land Development; 2021, 50; 281-288
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A data-driven approach to predict hydrometeorological variability and fluctuations in lake water levels
Autorzy:
Tan Kesgin, Remziye I.
Demir, Ibrahim
Kesgin, Erdal
Abdelkader, Mohamed
Agaccioglu, Hayrullah
Powiązania:
https://bibliotekanauki.pl/articles/28411608.pdf
Data publikacji:
2023
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
evaporation
lake water level
precipitation
stochastic time series models
water transfer
Opis:
Beyşehir Lake is the largest freshwater lake in the Mediterranean region of Turkey that is used for drinking and irrigation purposes. The aim of this paper is to examine the potential for data-driven methods to predict long-term lake levels. The surface water level variability was forecast using conventional machine learning models, including autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA). Based on the monthly water levels of Beyşehir Lake from 1992 to 2016, future water levels were predicted up to 24 months in advance. Water level predictions were obtained using conventional time series stochastic models, including autoregressive moving average, autoregressive integrated moving average, and seasonal autoregressive integrated moving average. Using historical records from the same period, prediction models for precipitation and evaporation were also developed. In order to assess the model’s accuracy, statistical performance metrics were applied. The results indicated that the seasonal autoregressive integrated moving average model outperformed all other models for lake level, precipitation, and evaporation prediction. The obtained results suggested the importance of incorporating the seasonality component for climate predictions in the region. The findings of this study demonstrated that simple stochastic models are effective in predicting the temporal evolution of hydrometeorological variables and fluctuations in lake water levels.
Źródło:
Journal of Water and Land Development; 2023, 58; 158--170
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies