Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "attraction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Recognizing Sets in Evolutionary Multiobjective Optimization
Autorzy:
Gajda-Zagórska, E.
Powiązania:
https://bibliotekanauki.pl/articles/308467.pdf
Data publikacji:
2012
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
basin of attraction
clustering
genetic algorithm
multiobjective optimization
Opis:
Among Evolutionary Multiobjective Optimization Algorithms (EMOA) there are many which find only Paretooptimal solutions. These may not be enough in case of multimodal problems and non-connected Pareto fronts, where more information about the shape of the landscape is required. We propose a Multiobjective Clustered Evolutionary Strategy (MCES) which combines a hierarchic genetic algorithm consisting of multiple populations with EMOA rank selection. In the next stage, the genetic sample is clustered to recognize regions with high density of individuals. These regions are occupied by solutions from the neighborhood of the Pareto set. We discuss genetic algorithms with heuristic and the concept of well-tuning which allows for theoretical verification of the presented strategy. Numerical results begin with one example of clustering in a single-objective benchmark problem. Afterwards, we give an illustration of the EMOA rank selection in a simple two-criteria minimization problem and provide results of the simulation of MCES for multimodal, multi-connected example. The strategy copes with multimodal problems without losing local solutions and gives better insight into the shape of the evolutionary landscape. What is more, the stability of solutions in MCES may be analyzed analytically.
Źródło:
Journal of Telecommunications and Information Technology; 2012, 1; 74-82
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving Population-Based Algorithms with Fitness Deterioration
Autorzy:
Wolny, A.
Schaefer, R.
Powiązania:
https://bibliotekanauki.pl/articles/308437.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
basin of attraction
clustering
fitness deterioration
genetic algorithm
optics
sequential niching
Opis:
This work presents a new hybrid approach for supporting sequential niching strategies called Cluster Supported Fitness Deterioration (CSFD). Sequential niching is one of the most promising evolutionary strategies for analyzing multimodal global optimization problems in the continuous domains embedded in the vector metric spaces. In each iteration CSFD performs the clustering of the random sample by OPTICS algorithm and then deteriorates the fitness on the area occupied by clusters. The selection pressure pushes away the next-step sample (population) from the basins of attraction of minimizers already recognized, speeding up finding the new ones. The main advantages of CSFD are low memory an computational complexity even in case of large dimensional problems and high accuracy of deterioration obtained by the flexible cluster definition delivered by OPTICS. The paper contains the broad discussion of niching strategies, detailed definition of CSFD and the series of the simple comparative tests.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 4; 31-44
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies