Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial" wg kryterium: Temat


Tytuł:
Use of the classification tree modeling to investigate the influence of crops on N2O and CH4 emissions released from the agricultural sector
Autorzy:
Kolasa-Więcek, A.
Powiązania:
https://bibliotekanauki.pl/articles/334695.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
nitrous oxide
methane
crops
modeling
predicting
artificial neural network
classification tree
Opis:
Methane and nitrous oxide are key pollutants emitted from agriculture. Primarily the livestock production has a significant share in CH4 emissions. The N2O emissions largely correspond to direct emissions associated with the cultivation of soils. The priority task of agriculture is to develop adaptive solutions enabling the reduction of pollutions in the next years. These capabilities apply to both technological solutions on the farms, as well as improved methods of management and policy tools. Therefore complementary information to the knowledge in the field of the possibilities for reducing CH4 and N2O are extremely valuable. The study of predictions of N2O and CH4 emissions on the basis of different arable crops areas with the use of Flexible Bayesian Models of neural networks was carried out. The decision trees have been designed in order to provide the knowledge and methods that allow the rapid identification of the most important arable crops that affect the quantity of these emissions. On the basis of the conducted analysis, wheat, maize and potatoes in the case of N2O emission and wheat and maize in the case of CH4 emission are the most important differentiating variables.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 1; 102-106
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konstrukcja bioreaktorów w kontekście zagadnienia modelowania procesu kompostowania
Bioreactors construction in the context of modeling composting process
Autorzy:
Olszewski, T.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335482.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bioreaktor
konstrukcja
kompostowanie
sztuczna sieć neuronowa
bioreactor
construction
composting
artificial neural network
Opis:
Kompostowanie materii organicznej jest złożonym procesem, który charakteryzuje wiele parametrów chemiczno-fizycznych. Badanie procesu kompostowania w pryzmach w skali rzeczywistej wymaga nakładu środków i pracy. Doświadczenia tego typu w warunkach terenowych są trudne do kontrolowania i brak jest pewności co do powtarzalności warunków pomiarowych. Wykorzystanie rozbudowanej aparatury pomiarowej w badaniach polowych jest bardzo utrudnione m.in. ze względu na wpływ zmiennej pogody, ograniczenia czasowe (częstotliwość wykonywania pomiarów) itp. Modelowanie procesu rozkładu substancji organicznych w laboratoriach umożliwia jego dokładniejsze poznanie i kontrolę nad czynnikami mającymi wpływ na jego przebieg. W pracy przedstawiono przegląd bioreaktorów wykorzystywanych do modelowania procesu kompostowania. Zastosowanie różnych rozwiązań konstrukcyjnych, sprzętu pomiarowego i rejestracyjnego ma istotny wpływ na odwzorowanie warunków terenowych w doświadczeniach laboratoryjnych. Przedstawiono również przykłady wykorzystania sztucznych sieci neuronowych podczas doświadczeń z użyciem bioreaktorów, jako narzędzia do modelowania zjawisk związanych z procesami przemiany materii w aspekcie biologicznym, chemicznym i fizycznym.
Composting of organic matter is a complex process characterized by many physical and chemical parameters. The studies investigated in a real scale need lots of labour and financial sources. The experiments infield conditions are difficult to control and their repeatability is low. The usage of scientific set-up is limited because of heap dimensions, weather conditions and work time limitations. The modeling of organic matter decomposition in laboratories makes easier better control and survey of parameters which influence on a process. The paper presents review of bioreactors used for modeling of composting process. The application of different constructions, techniques of measurement and data registration has an important impact on projection of field conditions in a laboratory scale. The examples of usage of the artificial neural networks during experiments with bioreactors were also presented.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 2; 52-56
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane metody sztucznej inteligencji w procesie diagnozowania wybranych ciągników rolniczych
Selected methods of artificial intelligence in the process of diagnosing of chosen agricultural tractors
Autorzy:
Boniecki, P.
Krysztofiak, A.
Czechlowski, M.
Przybylak, A.
Powiązania:
https://bibliotekanauki.pl/articles/335793.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ciągnik rolniczy
sztuczna inteligencja
eksploatacja
diagnozowanie
agricultural tractor
diagnostic
exploitation
artificial intelligence
Opis:
Systemy ekspertowe jako jedne z elementów sztucznej inteligencji, bywają narzędziem stosowanym w wielu dziedzinach gospodarki, w tym również w rolnictwie [4]. Jednym z problemów wysoko towarowych gospodarstw rolniczych jest problem diagnozowania maszyn rolniczych. W produkcji rolniczej często wykorzystuje się ciągniki, których prawidłowa eksploatacja determinuje efektywność prac polowych. Celem pracy jest budowa systemu ekspertowego służącego do diagnostyki oraz prawidłowej obsługi ciągników typu MF, niezbędnej w procesie eksploatacji.
Expert systems as elements of artificial intelligence, are sometimes a practical tool in many spheres of economy, and also in agriculture [4]. One from the problems of large-scale production agricultural farms is problem of diagnosing of agricultural machines. In agricultural production often used tractors, correct exploitation of which determines efficiency of field works. Aim of this work is to build an expert system to diagnosing and correct services of MF type tractors, in process of their exploitation.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 20-23
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody prognozowania wybranych zagadnień inżynerii rolniczej z wykorzystaniem sztucznych sieci neuronowych
The methods of predicting the issues of agricultural engineering with the use of artificial neural networks
Autorzy:
Dejewska, T.
Boniecki, P.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/335271.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
prognoza
artificial neural network
agricultural engineering
predicting
Opis:
Celem pracy było omówienie neuronowych metod prognozowania oraz porównanie ich efektywności w wybranych zagadnieniach inżynierii rolniczej przy użyciu sztucznych sieci neuronowych. Wskazano przy tym topologie sieci, które w rozwiązaniu problemów predykcyjnych charakteryzowały się najlepszą skutecznością.
The aim of the following thesis was the description of chosen methods of the prediction and the comparison of their efficiency in the field of agricultural engineering with the use of artificial neural networks. There were also pointed the typolgies of networks which turned out to be the most effective in the process of solving the prediction problems.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 28-31
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Visual quality evaluation of malting barley with use of neural image analysis
Wizualna ocena jakości jęczmienia browarnego z wykorzystaniem neuronowej analizy obrazu
Autorzy:
Raba, B.
Nowakowski, K.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/337065.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
malting barley
image processing
artificial intelligence
jęczmień browarny
przetwarzanie obrazu
sztuczna inteligencja
Opis:
The quality evaluation is one of the most important stages of the production processes. The same as regards the beer production and its components: hop, yeast, malting barley and other ingredients. Presented project deals with the complex quality evaluation of malting barley used for malt production. Its main goal is to elaborate complete methodology for the identification of varieties, the level of contamination and other visual features of malting barley with the use of computer science technologies, such as neural image analysis.
Jednym z najważniejszych etapów w procesie produkcyjnym jest ocena jakości. Podobnie jest w produkcji piwa i jego składników: chmielu, drożdży, jęczmienia browarnego i innych. Przedstawiony projekt dotyczy kompleksowej oceny jakości jęcz-mienia browarnego używanego do produkcji słodu. Jego głównym celem jest opracowanie kompletnej metodyki identyfikacji odmian, poziom zanieczyszczenia i innych wizualnych cech jęczmienia browarnego z wykorzystaniem technologii informatycznych opartych na neuronowej analizy obrazu.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 1; 80-83
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Autoasocjacyjna sieć neuronowa jako narzędzie do nieliniowej kompresji danych
The artificial neural nerwork as a helping tool in the process of non-linear data compression
Autorzy:
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/336092.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sieć neuronowa
autoasocjacyjna sieć neuronowa
kompresja danych
artificial neural network
data compression
autoassociative network
Opis:
Sieci autoasocjacyjne to sieci, które odtwarzają wartości wejściowe na swoich wyjściach. Działanie takie zdecydowanie ma sens, ponieważ rozważana sieć autoasocjacyjna posiada w warstwie środkowej (ukrytej) zdecydowanie mniejszą liczbą neuronów niż w warstwie wejściowej czy wyjściowej. Dzięki takiej budowie dane wejściowe muszą przecisnąć się przez swojego rodzaju zwężenie w warstwie ukrytej sieci, kierując się w do wyjścia. Dlatego też, w celu realizacji stawianego jej zadania reprodukcji informacji wejściowej na wyjściu, sieć musi się najpierw nauczyć reprezentacji obszernych danych wejściowych za pomocą mniejszej liczby sygnałów produkowanych przez neurony warstwy ukrytej, a potem musi opanować umiejętność rekonstrukcji pełnych danych wejściowych z tej "skompresowanej" informacji. Oznacza to, że sieć autoasocjacyjna w trakcie uczenia zdobywa umiejętność redukcji wymiaru wejściowych danych.
An autoassociative network is one which reproduces its inputs as outputs. Autoassociative networks have at least one hidden layer with less units than the input and output layers (which obviously have the same number of layers as each other). Hence, autoassociative networks perform some sort of dimensionality reduction or compression on the cases. Dimensionality reduction can be used to pre-process the input data to encode Information in a smaller number of variables. This approach recognizes that the intrinsic dimensionality of the data may be lower than the number of variables. In other words, the data can be adequately described by a smaller number of variables, if the right transformation can be found.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of longitudinal precipitation of liquid indicator (LPLI) with the use of the artificial neural network (MLP, RBF) models
Estymacja wskaźnika opadu podłużnego rozpylonej cieczy (Wso) za pomocą sztucznych sieci neuronowych (MLP i RBF)
Autorzy:
Pentoś, K.
Cieniawska, B.
Łuczycka, D.
Powiązania:
https://bibliotekanauki.pl/articles/334681.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
spraying efficiency
artificial neural network
longitudinal precipitation
jakość opryskiwania
sztuczne sieci neuronowe
rozkład podłużny
Opis:
The study presents the results of the analysis of two artificial neural networks as models of relationships between longitudinal precipitation of liquid indicator and selected technical and technological factors of spraying process. The measurements were conducted in laboratory conditions. A wind tunnel was primary element in experimental set-up. Based on the results, it can be stated that MLP model (R2 = 0.908 for validation data set) was more accurate that RBF model (R2 = 0.837 for validation data set). The analysis of input variables’ contribution indicated that the LPLI is influenced the most by the air flow speed and the droplet size. Spray boom height and spray nozzle angle were less influencing parameters.
W pracy przedstawiono wyniki analizy dwóch modeli matematycznych zależności między wskaźnikiem opadu podłużnego rozpylonej cieczy a wybranymi technicznymi i technologicznymi parametrami procesu opryskiwania. Modele zbudowano wykorzystując sztuczne sieci neuronowe. Pomiary przeprowadzono w warunkach laboratoryjnych. Głównym elementem stanowiska badawczego był tunel aerodynamiczny. Na podstawie otrzymanych wyników można stwierdzić, że model oparty o sieć MLP (R2 = 0.908 dla zbioru walidacyjnego) charakteryzował się wyższą dokładnością niż model oparty o sieć RBF (R2 = 0.837 dla zbioru walidacyjnego). Analiza stopnia wpływu poszczególnych parametrów wejściowych modelu na jego wyjście wskazuje, że największy wpływ na Wso mają prędkość przepływu powietrza oraz wielkość kropli. Wysokość belki opryskowej oraz kąt nachylenia rozpylacza w znacznie mniejszym stopniu wpływają na Wso.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 1; 58-62
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling methods of predicting potato yield - examples and possibilities of application
Metody modelowania predykcji plonu ziemniaków – przykłady i możliwości zastosowania
Autorzy:
Piekutowska, M.
Niedbała, G.
Adamski, M.
Czechlowski, M.
Wojciechowski, T.
Czechowska-Kosacka, A.
Wójcik Oliveira, K.
Powiązania:
https://bibliotekanauki.pl/articles/337475.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
yield prediction
potato
artificial neural networks
regression
predykcja plonowania
ziemniak
sztuczne sieci neuronowe
regresja
Opis:
The purpose of the following work is to review the methods used in predicting plant yields, with particular emphasis on potato production. The article refers to the histological methods of estimating plant yields and prevailing trends: groundbased remote sensing, which is often associated with regression calculus, multiple regression, artificial intelligence and image analysis. There are also two popular models SUBSTOR and LINTUL-POTATO, which are the foundation for developing more and more accurate tools of potato yield estimation. There are many methods that allow to predict yields before the end of the growing season. The most important element in creating prediction models is choosing the appropriate number of independent variables that actually shape the yielding of potatoes. Timely and accurate prediction of crop yields improve the management of agricultural production as well as limit financial, quantitative and qualitative losses of crops.
Celem niniejszej pracy był przegląd metod wykorzystywanych w prognozowaniu plonów roślin ze szczególnym uwzględnieniem produkcji ziemniaka. W artykule nawiązano do historycznych sposobów szacowania plonów roślin oraz obecnie panujących trendów w predykcji: teledetekcji naziemnej, która często powiązana jest z rachunkiem regresyjnym, regresji wielorakiej, sztucznej inteligencji, analizie obrazów. Wspomniano także o dwóch popularnych modelach SUBSTOR i LINTULPOTATO, które stworzyły podwaliny do opracowywania coraz dokładniejszych narzędzi prognozujących plony ziemniaków. Wiele metod pozwala na predykcję plonów przed zakończeniem sezonu wegetacyjnego. Najistotniejszym elementem tworzenia modeli predykcyjnych jest dobór odpowiedniej liczby zmiennych niezależnych, które rzeczywiście kształtują plonowanie ziemniaków. Terminowe i dokładne prognozy plonów roślin uprawnych usprawniają zarządzanie produkcją rolniczą, pozwalają na ograniczanie strat finansowych, ilościowych i jakościowych plonów.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 176-180
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konwersja graficznych danych empirycznych do postaci zbiorów uczących w procesie neuronowej identyfikacji szkodników jabłoni
Empirical graphics data conversion to learning sets in apple-tree pests neural identification process
Autorzy:
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/336457.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
szkodnik
identyfikacja neuronowa
sztuczna sieć neuronowa
SSN
pest
neural identification process
artificial neural network
ANN
Opis:
Szkodliwość oddziaływania owadów na rośliny uprawne polega przede wszystkim na ich żerowaniu. Fakt ten powoduje daleko posunięte zmiany w morfologii i fizjologii roślin, co w efekcie końcowym prowadzi do ich zamierania. Żeby prawidłowo oznaczyć szkodnika, trzeba mieć możliwość identyfikacji cech kluczowych. Cechy te umiejscowione są na rozmaitych częściach ciała. Wymaga to jednak sporej wiedzy i dobrego rozeznania w grupach. Dotychczasowe metody identyfikacji owadów opierają się na rozpoznawaniu za pomocą kluczy. Klucze używane przez badaczy są ściśle dopasowane do danego osobnika. W zależności od rodzaju czy gatunku szkodnik może być opisany za pomocą setek a nawet tysięcy kluczy, co świadczy o trudności i czasochłonności w ich oznaczaniu. Sztuczne sieci neuronowe ze względów technicznych są uproszczonym symulatorem pracy ludzkiego mózgu posiadając jego cechy. Potrafią się uczyć, są mało wrażliwe na niekompletną informację wejściową przetwarzają wprowadzone sygnały i podają na wyjściu wyniki w czasie rzeczywistym [2]. Wskazane właściwości oraz analizy podczas badań pozwalają przypuszczać, że SNN mogą wykonać zadanie identyfikacji podobnie jak człowiek. Dzięki takiemu zautomatyzowaniu procesu identyfikacji udałoby się wyeliminować współczynnik obiektywizmu.
The mischievous of insects is mostly about their preying on the cultivated plants. In order to identify a pest correctly, one has to have the ability to identify its key characteristics. These are placed all over the insects corpse. A pest can be described by hundreds or even thousands of 'keys' - depending on the kind or species - what proves how difficult and time-consuming the identification is. ANN (Artificial Neural Networks) can learn, are less sensible to incomplete incoming information, they are processing entered signals and give results in actual time. The above properties and the analysis during the research allow to make a conclusion that ANN may do the identification task similarly to a human being. Thanks to such identification process automation it could be possible to eliminate the objectivism factor.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part I. Forecasting using artificial neural networks
Prognozowanie dobowego zapotrzebowania na gaz ziemny wiejskich gospodarstw domowych przy wykorzystaniu metod sztucznej inteligencji. Cz. 1. Prognozowanie przy wykorzystaniu sztucznych sieci neuronowych
Autorzy:
Nęcka, K.
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/334058.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
natural gas
short-term forecasts
artificial neural networks
gaz ziemny
prognoza krótkookresowa
sztuczna sieć neuronowa
Opis:
The paper determines daily forecast demands for natural gas using artificial neural networks (MLPs). The influence of net-work structure, the type of activation function and the training process used on the quality of prediction were studied. It was found that the quality of forecasts was highly influenced by the network training algorithm. The smallest errors of the ex-pired forecasts (MAPE 5-6%) were obtained using the BFGS algorithm.
W trakcie badań wyznaczano dobowe prognozy zapotrzebowania na gaz ziemny z wykorzystaniem sztucznych sieci neuronowych MLP. Przebadano wpływ struktury sieci, rodzaju funkcji aktywacji oraz zastosowanego procesu uczenia sieci na jakość predykcji. Stwierdzono, że na jakość prognoz duży wpływ ma algorytm uczenia sieci. Najmniejsze błędy prognoz wygasłych (MAPE rzędu 5-6%) uzyskano stosując algorytm BFGS.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 2; 62-64
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
NEURALNET 2005: Education computer system supporting the use of artificial neural networks in agriculture
NEURALNET 2005: Komputerowy system edukacyjny wspomagający proces wykorzystania sztucznych sieci neuronowych w rolnictwie
Autorzy:
Boniecki, P.
Weres, J.
Krysztofiak, A.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/336078.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
NEURALNET 2005
system komputerowy
edukacja
sztuczna sieć neuronowa
rolnictwo
computer system
artificial neural network
agriculture
education
Opis:
The purpose of this project was to develop an interactive computer application pursuant to software engineering standards that would support education in the field of constructing and operating selected artificial neural network topologies. The project is designed to investigate selected problems having to do with the generation and operation of perceptron and radial network and help to present the networks' operating principles as classification instruments in a case of identifying flower varieties for practical purposes.
Celem pracy było wytworzenie, zgodnie ze standardami inżynierii oprogramowania, interaktywnej aplikacji komputerowej, wspomagającej proces edukacyjny w zakresie konstrukcji oraz eksploatacji wybranych topologii sztucznych sieci neuronowych w kontekście wykorzystania ich w rolnictwie. Ma ona przybliżyć wybrane zagadnienia z zakresu generowania i eksploatacji sieci typu perceptron i sieci radialnej oraz praktycznie zaprezentować zasadę działania tych sieci jako narzędzi klasyfikacyjnych na przykładzie zadania identyfikacji odmian kwiatów.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 10-13
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny "nStraw" wspomagający neuronową identyfikację stopnia dojrzałości kompostu
Computer system "nStraw" assisting a neural identification of compost maturity
Autorzy:
Boniecki, P.
Jakubek, A.
Kuzimska, T.
Pilarski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336465.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
kompost
dojrzałość
analiza obrazu
sztuczna inteligencja
sieci neuronowe
compost
maturity
image analysis
artificial intelligence
neural networks
Opis:
Celem pracy była neuronowa identyfikacja stopnia rozkładu materiału organicznego (słomy) na podstawie informacji graficznej, uzyskanej przy użyciu metod analizy obrazu. W tym celu opracowano oryginalny system informatyczny "nStraw", umożliwiający edycję obrazów cyfrowych, akwizycję danych graficznych, ich analizę oraz konwersję do zbiorów uczących w postaci akceptowalnej przez symulator sztucznych sieci neuronowych.
The aim of this study was to describe a neural identification of the level of decomposition of organic material, based on graphic information, which is obtained by using image analysis. For this purpose, a neural network "nStraw" was generated for editing images, data retrieval and analysis.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 21-25
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe techniki klasyfikacyjne w problemach identyfikacyjnych inżynierii rolniczej
The neuronal classifying techniques in problems of identification of agricultural engineering
Autorzy:
Boniecki, P.
Mueller, W.
Powiązania:
https://bibliotekanauki.pl/articles/337135.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
technika neuronowa
klasyfikacja
sztuczna sieć neuronowa
agricultural engineering
neural technique
artificial neural network
classification
Opis:
Celem pracy było omówienie podstawowych technik klasyfikacyjnych w kontekście wykorzystania ich w problemach badawczych inżynierii rolniczej. Wskazano wybrane topologie sztucznych sieci neuronowych jako efektywne narzędzia klasyfikacyjne. Dodatkowym efektem przeprowadzonej analizy bylo wytworzenie systemu informatycznego "Sieci neuronowe - Perceptron " wspomagającego proces edukacji. Wytworzony program komputerowy ma za zadanie klasyfikować dane zaczerpnięte z obszaru inżynierii rolniczej. Program działa w oparciu o sieć wielowarstwową typu perceptron - MLP (MultiLayer Perceptron).
The aim of the work was discussion of basic classifying techniques in context of their utilisation in investigative problems of agricultural engineering. The chosen topology of artificial neural networks were showed as effective classifying tools. Creation of the computer system "The neuronal nets - Perceptron " was the additional effect of the conducted analysis, helping the process of education. The aim of the created computer program is to classify the data obtained from the area of agricultural engineering. The program acts on the basis of many-layered network of perceptron type - MLP (MultiLayer Perceptron).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 3; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe jako narzędzie wspomagające proces numerycznego przetwarzania w problemach inżynierii rolniczej
The artificial neural networks as a helping tool in the process of numerical agricultural engineering problems
Autorzy:
Boniecki, P.
Paryś, A.
Powiązania:
https://bibliotekanauki.pl/articles/336080.pdf
Data publikacji:
2006
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
inżynieria rolnicza
sztuczna sieć neuronowa
przetwarzanie numeryczne
macierz odwrotna
agricultural engineering
artificial neural network
numerical processing
inverted matrix
Opis:
Proces dyskretyzacji ciągłego zagadnienia różniczkowego (wraz z warunkami początkowo-brzegowymi) prowadzi do uzyskania liniowego układu równań algebraicznych. Rozwiązanie takiego układu równań wymaga znajomości postaci macierzy odwrotnej układu. Jednokierunkowe sieci neuronowe mogą być efektywnie wykorzystane w algebrze macierzowej do realizacji wielu standardowych operacji macierzowych, w tym również do odwracania macierzy. Wymienione wyżej modele neuronowe pozwalają w trakcie ich eksploatacji na uzyskanie dużej szybkości działania (praktycznie działania w czasie rzeczywistym). Problemem zasadniczym, w powyższym kontekście, jest właściwe określenie funkcji energetycznej, której minimalizacja pozwala na zaprojektowanie, wygenerowanie oraz nauczenie odpowiedniej topologii sieci neuronowej. Celem pracy była analiza możliwości wykorzystanie nowoczesnych technik sztucznych sieci neuronowych do generowania postaci macierzy odwrotnej.
The discretization process of the cotinuous differential issue (with the initial-border conditions) leads to obtaining the linear set of algebraic equations. To resolve such a set of equations, the knowledge about the inverted form of system matrix is required. One-directional neural networks can be effectively used in matrix algebra to conduct lots of standard matrix operations, including matrix inversion. The neural models listed above during exploitation let to obtain a great functional speed (nearly real time work). The basic problem, in mentioned context, is the proper definition of an energetic function, minimalization of which lets to design, generate and learn the proper neural network topology. The aim of work was analysis of the possibilities of using modern techniques of artificial neural networks to generate the inverted matrix form.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2006, 51, 1; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of artificial intelligence methods for optimization of tractive properties on silty clay loam
Metody sztucznej inteligencji w optymalizacji wybranych właściwości trakcyjnych na glebach gliniastych
Autorzy:
Pieczarka, K.
Pentoś, K.
Lejman, K.
Owsiak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/334663.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
traction force
traction efficiency
artificial neural network
genetic algorithm
siła trakcyjna
sprawność trakcyjna
sztuczne sieci neuronowe
algorytm ewolucyjny
Opis:
The aim of this study was to develop valuable model of the interaction between low-power tractors wheel and deformed ground as well as to optimize tractor performance on silty clay loam. The relationships between traction force as well as traction efficiency and soil moisture, soil compaction, horizontal deformation, and vertical load were the subject of investigation. The research was carried out in the laboratory conditions. The two soft computing techniques of mathematical modeling were used: multilayer perceptron and radial basis function neural network. The more efficient model was obtained by multilayer perceptron. For the model with traction force as the output parameter the coefficient of determination was equal to 0,963 (MLP model) and 0,907 (RBF model). For the model with traction efficiency as the output parameter the coefficient of determination was equal to 0,986 and 0,944, respectively. Using the MLP model, the sensitivity analysis was conducted. The highest relative influence on traction force was observed for vertical load, in the case of traction efficiency, horizontal deformation is the most important parameter. For both dependent variables the lowest influence was calculated for soil compaction. The optimization of tractive properties requires generally high horizontal deformation, average soil moisture and high soil compaction. High vertical load is necessary for traction force maximization and relatively low for traction efficiency optimization.
Celem pracy było wygenerowanie możliwie dokładnych modeli opisujących interakcję układu opona napędowa–gleba gliniasta dla mikrociągnika. Na podstawie wygenerowanych modeli przeprowadzono optymalizację pracy analizowanego układu. Badaniom podlegały zależności między siłą i sprawnością trakcyjną a wilgotnością i zwięzłością gleby, deformacją poziomą i obciążeniem pionowym. Badania przeprowadzono w warunkach laboratoryjnych. W zadaniu modelowania matematycznego wykorzystano dwie techniki sztucznej inteligencji: sieć neuronową typu perceptron wielowarstwowy (MLP) oraz sieć neuronową z radialnymi funkcjami bazowymi (RBF). Bardziej dokładny okazał się model oparty o sieć MLP. Współczynnik determinacji opisujący jakość modelu w przypadku siły trakcyjnej wynosił 0,963 (model MLP) i 0,907 (model RBF). W przypadku sprawności trakcyjnej współczynnik determinacji wyniósł odpowiednio 0,986 i 0,944. Wykorzystując modele oparte na sieci MLP przeprowadzono analizę wrażliwości modeli. Analiza ta wykazała, że największy wpływ na siłę trakcyjną ma obciążenie pionowe, a w przypadku sprawności trakcyjnej najbardziej znaczącym parametrem jest deformacja pozioma. Dla obu zmiennych zależnych, najmniej znaczącym parametrem jest zwięzłość gleby. Optymalizacja parametrów trakcyjnych wymaga generalnie dużej wartości deformacji poziomej, średniej wartości wilgotności i dużej zwięzłości gleby. Maksymalizacja siły trakcyjnej jest możliwa przy dużej wartości obciążenia pionowego, a optymalną wartość sprawności trakcyjnej można uzyskać przy niskiej wartości obciążenia pionowego.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 1; 63-68
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies