Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Okoń, K." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
OS-GLCM computer system designed to generate a GLCM matrix for the digital image of oilseed rape
System informatyczny OS-GLCM przeznaczony do generowania macierzy GLCM opisującej teksturę obrazów cyfrowych rzepaku
Autorzy:
Okoń, P.
Boniecki, P.
Kozłowski, R. J.
Górna, K.
Jurek, P.
Fojud, A.
Powiązania:
https://bibliotekanauki.pl/articles/336570.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
GLCM matrix
disease
oilseed rape
macierz GLCM
choroba
rzepak
Opis:
The purpose of this paper is to produce original software for calculating the GLCM matrix and its properties. Application mechanics is based on two AForge.Net library for image segmentation, and the Accord.Net library for calculating the GLCM matrix. The application mechanics have included the ability to calculate the GLCM matrix at the given accounts. The application is equipped with functions that calculate the properties of the matrix as a full complement of the problem. Generated matrix properties are saved to a CSV file, or added to an existing one according to user preferences. Digital images of rape leaves constitute a research material used in the work.
Celem niniejszej pracy jest wytworzenie oryginalnego oprogramowania do obliczania macierzy GLCM, oraz jej właściwości. Mechanika aplikacji opiera się na dwóch bibliotekach AForge.Net do segmentacji obrazu, oraz biblioteka Accord.Net do obliczania macierzy GLCM. W mechanice aplikacji uwzględniono możliwość obliczania macierzy GLCM przy zadanych kontach. Aplikacja została wyposażona w funkcje obliczające właściwości macierzy, co pełni formę uzupełnienia zagadnienia. Wygenerowane właściwości macierzy zastają zapisane do pliku CSV, lub dopisane do już istniejącego wedle preferencji użytkownika. Materiałem badawczym wykorzystanym w pracy, są obrazy cyfrowe liści rzepaku.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2017, 62, 4; 41-44
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of neuron image analysis to build classification model of corpora lutea of domestic cattle
Wykorzystanie neuronowej analizy obrazu w budowie modelu klasyfikacyjnego ciałek żółtych u bydła domowego
Autorzy:
Górna, K.
Zaborowicz, M.
Jaśkowski, B. M.
Idziaszek, P.
Okoń, P.
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/337157.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural modeling
computer image analysis
corpus luteum
ovaries
domestic cattle
modelowanie neuronowe
komputerowa analiza obrazu
ciałko żółte
jajnik
bydło domowe
Opis:
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2016, 61, 3; 162-166
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design project of a system of wireless sensors network supporting the fields irrigation process
Projekt systemu sieci bezprzewodowych czujników wspierający proces nawadniania pól
Autorzy:
Okoń, P.
Rudowicz-Nawrocka, J.
Boniecki, P.
Kozłowski, R. J.
Jurek, P.
Fojud, A.
Przybył, K.
Powiązania:
https://bibliotekanauki.pl/articles/334168.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
WSN
irrigation of fields
wireless sensor network
nawadnianie pól
sieć czujników bezprzewodowych
Opis:
The aim of this work is to present a project of a network of wireless sensors for the monitoring of plantations in agriculture. The developed project can be used to automate the field irrigation process. The design of the field moisture control system was based on the WSN (Wireless Sensor Network) technology. A measuring element with necessary sensors was also designed for the project. The methodological part of the work includes the network design and the development of the concept of measuring device construction. The Advantech ADAM 2000Z series components were used for the wireless sensor network project.
Celem niniejszej pracy jest prezentacja projektu sieci bezprzewodowych czujników dla potrzeb monitoringu plantacji w rolnictwie. Opracowany projekt może być wykorzystywany do automatyzacji procesu nawadniania pól. Projekt systemu kontroli stopnia uwilgotnienia pola został wykonany na podstawie technologii WSN (ang. Wireless Sensor Network). Na potrzeby projektu został również zaprojektowany element pomiarowy wraz z niezbędnymi czujnikami. Cześć metodyczna pracy obejmuje projekt sieci, oraz opracowanie koncepcji budowy urządzenia pomiarowego. Do projektu bezprzewodowej sieci czujników użyto komponentów firmy Advantech ADAM seria 2000Z.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2018, 63, 4; 162-164
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies