- Tytuł:
-
Use of neuron image analysis to build classification model of corpora lutea of domestic cattle
Wykorzystanie neuronowej analizy obrazu w budowie modelu klasyfikacyjnego ciałek żółtych u bydła domowego - Autorzy:
-
Górna, K.
Zaborowicz, M.
Jaśkowski, B. M.
Idziaszek, P.
Okoń, P.
Boniecki, P.
Przybył, J. - Powiązania:
- https://bibliotekanauki.pl/articles/337157.pdf
- Data publikacji:
- 2016
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
- Tematy:
-
neural modeling
computer image analysis
corpus luteum
ovaries
domestic cattle
modelowanie neuronowe
komputerowa analiza obrazu
ciałko żółte
jajnik
bydło domowe - Opis:
-
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1. - Źródło:
-
Journal of Research and Applications in Agricultural Engineering; 2016, 61, 3; 162-166
1642-686X
2719-423X - Pojawia się w:
- Journal of Research and Applications in Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki