Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Straka, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The f3d tools for processing and visualization of volumetric data
Autorzy:
Šrámek, M.
Dimitrov, L. I.
Straka, M.
Červeňanský, M.
Powiązania:
https://bibliotekanauki.pl/articles/333554.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
przetwarzanie danych w 3D
wizualizacja objętości
format pliku 3D
3D data processing
volume visualization
Opis:
In this paper we introduce the f3d format for storage of volumetric data together with a suite of tools for processing, segmentation and visualization of such data. Both the format and tools were developed for a highly variable and rapidly evolving academic environment, where new data processing and visualization tasks emerge very often. The tools address all the steps of a volume visualization pipeline: starting with import of external formats, over preprocessing, filtering, segmentation to interactive visualization.
Źródło:
Journal of Medical Informatics & Technologies; 2004, 7; MIP69-78
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
3D watershed transform combined with a probabilistic atlas for medical image segmentation
Autorzy:
Straka, M.
La Cruz, A.
Kochl, A.
Sramek, M.
Groller, E.
Fleischmann, D.
Powiązania:
https://bibliotekanauki.pl/articles/333997.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
angiografia tomografii komputerowej
segmentacja oparta na wiedzy
probabilistyczny atlas
kategoria histogramu
CT angiography
knowledge based segmentation
probabilistic atlas
thin-plate-spline
histogram classification
Opis:
Recent advances in medical imaging technology using multiple detector-row computed tomography (CT) provide volumetric datasets with unprecedented spatial resolution. This has allowed for CT to evolve into an excellent non-invasive vascular imaging technology, commonly referred to as CT-angiography. Visualisation of vascular structures from CT datasets is demanding, however, and identification of anatomic objects in CT-datasets is highly desirable. Density and/or gradient operators have been used most commonly to classify CT data. In CT angiography, simple density/gradient operators do not allow precise and reliable classification of tissues due to the fact that different tissues (e.g. bones and vessels) possess the same density range and may lie in close spatial vicinity. We think, that anatomic classification can be achieved more accurately, if both spatial location and density properties of volume data are taken into account. We present a combination of two well-known methods for volume data processing to obtain accurate tissue classification. 3D watershed transform is used to partition the volume data in morphologically consistent blocks and a probabilistic anatomic atlas is used to distinguish between different kinds of tissues based on their density.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 6; IT69-78
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies