Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Additive Manufacturing" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Additive manufacturing for health technology applications
Autorzy:
Klimaschewski, Sven F.
Raschke, Robert
Vehse, Mark
Powiązania:
https://bibliotekanauki.pl/articles/95165.pdf
Data publikacji:
2019
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
additive manufacturing
biocompatible hydrogel
stereolithography
selective laser sintering
wytwarzanie przyrostowe
hydrożel
stereolitografia
selektywne spiekanie laserowe
Opis:
In this study we demonstrate an overview about possibilities in using additive manufacturing for tissue engineering and orthopedic prosthesis. We show the possibilities to produce scaffolds by using a low cost commercial stereolithography system under the use of biocompatible hydrogels like Poly(ethylene glycol) diacrylate. We also demonstrate that it is possible to use a low cost selective laser sintering system to produce individual prostheses to support the healing process in many orthopedic issues.
Źródło:
Journal of Mechanical and Energy Engineering; 2019, 3, 3; 215-220
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Additive manufacturing methods, materials and medical applications - the review
Autorzy:
Laskowska, Dorota
Mitura, Katarzyna
Ziółkowska, Ewa
Bałasz, Błażej
Powiązania:
https://bibliotekanauki.pl/articles/1819146.pdf
Data publikacji:
2021
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
additive manufacturing
preoperative planning
tissue engineering
metal implants
wytwarzanie przyrostowe
planowanie przedoperacyjne
inżynieria tkankowa
implanty metalowe
Opis:
The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.
Źródło:
Journal of Mechanical and Energy Engineering; 2021, 5, 1; 15--30
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Material investigations on poly(ethylene glycol) diacrylate-based hydrogels for additive manufacturing considering different molecular weights
Autorzy:
Klimaschewski, Sven F.
Küpperbusch, Janine
Kunze, Annika
Vehse, Mark
Powiązania:
https://bibliotekanauki.pl/articles/2106437.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
additive manufacturing
stereolithography
PEGDA
molecular weight
material properties
biocompatible hydrogel
wytwarzanie przyrostowe
stereolitografia
masa cząsteczkowa
właściwości materiałów
hydrożel
Opis:
The aim of this case study is to generate several poly(ethylene glycol) diacrylate-based hydrogels using additive manufacturing processes. The interest here is in determining different material properties. The test specimens are produced using a commercial stereolithography system. For this purpose, three formulations are prepared. The basis in each case is PEGDA with average molecular weights of 700 Mn, 575 Mn and 250 Mn. A photoinitiator and a UV absorber are added to ensure spatial and temporal cross-linking. Furthermore, the formulations are tested for their material properties according to ISO standards using tensile, compression and hardness tests. An equivalence can be found in the tensile and compression tests. The results with the molecular weights of 700 Mn and 575 Mn show values close to each other. However, the results of the material tests with the molecular weight of 250 Mn are ten times higher. The Shore A hardness values also correlate with the previous tests. These results between molecular weight and material property are particularly striking. A novel aspect of this method could be that the properties determined of these tailor-made high-performance polymers can be applied to different areas of application in an organism.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 1; 33--42
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Continuous liquid interface production (CLIP) method for rapid prototyping
Autorzy:
Düzgün, D. E.
Nadolny, K.
Powiązania:
https://bibliotekanauki.pl/articles/95197.pdf
Data publikacji:
2018
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
rapid prototyping
additive manufacturing
continuous liquid
3D printing
Continuous Liquid Interface Production
CLIP
szybkie prototypowanie
wytwarzanie addytywne
produkcja dodatkowa
drukowanie 3D
drukowanie przestrzenne
Opis:
Additive Manufacturing (AM) processes such as three- dimensional (3D) printing are one of most important technologies of our century. Additive manufacturing is a manufacturing process in which 3D solid objects are created. It enables the creation of physical 3D models of objects using a series of an additive or layered development framework, where layers are laid down in succession to create a complete 3D object. Additive manufacturing is also known as 3D printing. The strongest reasons for the use of rapid prototypes in manufacturing are the production of parts with a small quantity or a complex shape, the obtaining of lighter parts, the prevention of waste of raw materials, a wider availability of testing and design and further personalization. Continuous liquid interface production (CLIP) is an alternative approach to AM by exploiting the basic principle of oxygen-impaired photopolymerization to create a continuous fluid interface of uncured resin between the growing section and the exposure window.
Źródło:
Journal of Mechanical and Energy Engineering; 2018, 2, 1; 5-12
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies