Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "train simulation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Modernization of the KNI 140070 viaduct and its influence on dynamic response under selected high speed train
Autorzy:
Szurgott, P.
Kozera, D.
Powiązania:
https://bibliotekanauki.pl/articles/242996.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
bridge - train interaction
composite bridge
ballasted track
ICE train
modelling and simulation
Opis:
The paper develops a methodology of FE modelling and simulation of the bridge - track - moving train (BTT) system using LS-DYNA computer code. The KNI 140070 viaduct of span length 14.40 m with ballasted track was selected as a representative for the study. Two variants of the viaduct were taken into consideration - a version operated before the modernization in 2008 and the modernized version including additional flats welded to the bottom flanges of the main beams. The German high-speed train ICE-3 moving at 150–300 km/h was selected. The FE model of the BTT system was developed using Altair HyperMesh and LS-PrePost software. The platform of the viaduct was modelled using 8-node 48 DOF solid elements. The structure was symmetrised, homogenized and reflected by linear viscoelastic orthotropic materials. Discrete model of the track included the main and side rails, fastening systems, sleepers, crushed stone ballast and approach RC slabs. Components of the train FE model were considered as rigid bodies. Cylindrical and revolute constrained joints were applied for kinematic connections and relations between respective components. Discrete springs and dampers were applied for FE modelling of the primary and the secondary suspension systems. Numerical simulations were focused on determining the resonant velocities for both considered variants. Selected time histories for displacements and stresses, were shown as the results of the analyses.
Źródło:
Journal of KONES; 2012, 19, 4; 615-624
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling and numerical simulation of symmetric vibrations of the KNI 140070 viaduct -ballasted track - KTX train system
Autorzy:
Szurgott, P.
Klasztorny, M.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/247456.pdf
Data publikacji:
2010
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
railway bridge
composite bridge
ballasted track
KTX train
modelling and simulation
Opis:
The paper develops a new methodology of FE modelling and simulation of the bridge - track - moving train system with the use of CAE systems. The KNI 140070 viaduct of span length 14.40 m, located on the Polish Central Main Line, has been selected. The modernized track contains: 60E1 main rails equipped with Vossloh 300-1 fasteners, 60E1 side rails with SB3 fasteners, B 320 U60 sleepers, crushed stone ballast, approach RC slabs. A KTX (Korea Train eXpress) high-speed train, being a modification of a TGV train, is taken into consideration. A methodology of physical and numerical modelling of the viaduct, the track and the train was developed using Altair HyperMesh and LS-PrePost software. The FE model of a bridge superstructure consists of 4-node shell elements (main beams) and 8-node 48 DOF solid elements (reinforced concrete platform). RAIL TRACK and RAIL TRAIN modules available in LS-Dyna system were applied for simulating the train — trach interaction. Hughes-Liu beam elements were used for the rail modelling. Rail fastenings were simulated using one-dimensional discrete spring and damper elements. Carbodies, bogieframes and wheelsets were considered as rigid bodies and they were modelled using shell and beam elements. Cylindrical and revolute constrained joints and discrete springs and dampers were applied to connect all components of the FE model of rail-vehicles. The exemplary simulation of transient vibrations of the bridge - trach -train system has been made for service velocity 300 km/h. Contours of displacement and stress and selected time histories for displacements, accelerations and stresses, created in LS-PrePost and HyperView software, have been analysed.
Źródło:
Journal of KONES; 2010, 17, 3; 415-422
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Span length influence on dynamic response of selected bridge under high - speed train
Autorzy:
Szurgott, P.
Bernacki, P.
Powiązania:
https://bibliotekanauki.pl/articles/247827.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
railway bridge
composite bridge
ballasted track
high-speed train
modelling and simulation
Opis:
The paper presents a methodology of finite element (FE) modelling and simulation of the bridge – track – moving high-speed train system using CAE systems. Two composite (reinforce-concrete – steel) bridges were considered. The span length was equal to 15 and 21 meters, respectively. Bridges selected for the study belong to the proposed series of bridges with the span length of 15 to 27 meters stepped by 3 meters. Full symmetry of the bridges was assumed. RC platform was homogenized since the rebars were distributed quasi-uniformly in the specified platform sections. The FE model of a bridge superstructure consisted of 4-node shell elements (main beams) and 8-node 48 DOF solid elements (reinforced concrete platform). RAIL_TRACK and RAIL_TRAIN LS-DYNA’s modules were applied for simulating the moving train – track interaction. Ballasted track with the rectilinear rail-line axis was taken into consideration. German ICE-3 train running at velocity of 200–300 km/h was selected as a representative for the study. All mass components of the train FE model were treated as rigid bodies. Symmetric vibrations of the train units were assumed with respect to the main longitudinal vertical plane of symmetry of the system. Nodal displacement and longitudinal normal stress in shell elements were registered during the FE analysis. The results were depicted in the form of time histories for selected velocities. In addition, extreme values of vertical deflections and normal stress were compiled and presented a function of train velocity. It allowed to assess the dynamic response of the bridge depending on its span length. Contours of resultant displacement for the RC platform was also presented.
Źródło:
Journal of KONES; 2013, 20, 1; 343-350
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies