Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "toxic gas" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analysis of electric vehicles efficiency and their influence on environmental pollution
Autorzy:
Karczewski, Mirosław
Szczęch, Leszek
Polak, Filip
Brodowski, Szymon
Powiązania:
https://bibliotekanauki.pl/articles/244730.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
electric vehicle
exhaust gas toxic components
electro power plants
electricity production
Opis:
Electric vehicles are increasingly present on the roads of the whole world. They have the opinion of ecological vehicles, not polluting the environment. Society is more and more often persuaded to buy electric cars as an environmentally friendly solution but is this for sure? Electric cars need quite a lot of electricity accumulated in batteries to drive on a long range. During the charging process, this energy is obtained from the electricity network, to where it is supplied by power plant. Electricity production from renewable sources is a privilege for the rare. However, electric cars are charged from the electricity grid, which in large part energy comes from non-renewable fuels. The efficiency of energy production in power plants and the energy transmission and conversion chain causes that only part of the energy produced in this way goes to the vehicle’s wheels. Although the power plants are equipped with more and more efficient exhaust gas cleaning systems, they do not clean them up to 100%. Sulphur, nitrogen, mercury and heavy metals remain in the exhaust. The article is an attempt to answer the question whether the total emission of toxic components associated with the use of an electric vehicle is not bigger than in a traditional internal combustion engine.
Źródło:
Journal of KONES; 2019, 26, 4; 97-104
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis concerning possibilities of reduction of toxic substances and co2 emission by use of dual fuel diesel engines for seagoing ships main propulsion
Autorzy:
Giernalczyk, M.
Górski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/244704.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
toxic substances
carbon dioxide
fuel consumption
dual fuel engines
natural gas
Opis:
The goal of the paper is to focus the problem of emission of toxic compounds e.g. NOx, SOx and CO2 from seagoing ships to environment. The VI Amendment to Marpol Convention concerning prevention against air pollution by seagoing ships brought into practice in May 19th 2005 forced ship owners to use means for reduction of environment harmful substances emission to atmosphere. Considerable reduction of these harmful substances can be use dual fuel diesel engines for ship propulsion. Dual fuel engines are fuelled by natural gas having methane as main component. Leading producers of marine diesel engines introduced into production diesel engines DF (Dual Fuel) type. These engines can be fuelled alternatively with natural gas or with heavy fuel oil and marine diesel oil. Today the propulsion by diesel engines fuelled with natural gas is the most popular on ships carrying natural gas cargo i.e. LNG carriers (Liquefied Natural Gas Carriers). Natural gas is freight in liquid form under atmospheric pressure in temperature -163 °C. Due to heat penetration into cargo tanks, the liquefied gas evaporates. Evaporated cargo BOF (Boil Off Gas) is used as a fuel in ship diesel engines. However, dual fuel engines are used on other types of ships not only on LNG carriers. A number of seagoing ships fuelled with natural gas are now under construction. For example container ship 9,000 TEU in Japan shipyard Kawasaki Heavy Industries or container ship 14,000 TEU in Korean shipyard Daewoo Shipbuilding & Marine Engineering for company CMA-CGM. Ships fuelled with natural gas e.g. modern ferries are also built by Stocznia Remontowa Shipbuilding in Poland for Norwegian owner. Adaptation of presently operated ships for fuelling with natural gas is also considered.
Źródło:
Journal of KONES; 2014, 21, 2; 77-82
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laboratory study on influence of air duct throttling on exhaust gas composition in marine four - stroke diesel engine
Autorzy:
Kowalski, J.
Powiązania:
https://bibliotekanauki.pl/articles/248050.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
marine diesel engine
exhaust gas composition
toxic emission
laboratory investigation
air duct throttling
Opis:
Presented paper shows results of laboratory tests on the relationship between the throttling of a cross area of an air intake duct and the composition of exhaust gas from the marine engine. The object of research is a laboratory four-stroke diesel engine, worked with a load from 50kW to 250kW at a constant speed. During the laboratory, tests over 50 parameters were measured of the engine with technical condition recognized as a “working properly” and with a simulated the air intake duct throttling. The simulation consisted of inserting the throttling flanges to the air intake duct before compressor, limiting duct cross-sectional area by 20% and 60% respectively. The results of laboratory research confirm that the effect of the air intake duct throttling on the engine thermodynamic parameters is clearly visible only at considerable throttling. In the case of measuring the composition of exhaust gas, both mole fractions and emissions of gaseous components markedly affected even at low throttling. For example, 20% throttling of the cross section of the air intake duct increase the mole fraction of carbon monoxide in exhaust gas almost 44% during working the engine with load equal to 250kW, and only 10% of the temperature after air cooler. Keep in mind that the temperature after air cooler was an engine parameter, which undergoes the greatest change during the simulation of that malfunction. The conclusion is that the results of measurements of the composition of exhaust gas may contain valuable diagnostic information about the technical condition of the air delivery to the engine system.
Źródło:
Journal of KONES; 2012, 19, 1; 191-198
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies