Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "regenerative braking" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Technical and legal determinants of energy conversion in electric vehicle equipped with energy recovery system
Autorzy:
Juda, Z.
Powiązania:
https://bibliotekanauki.pl/articles/247926.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
transport
regenerative braking
energy conversion
Opis:
Regenerative braking in electric or hybrid driven vehicles is now commonly used feature. Development of technologies of electrical machines, secondary energy sources, power electronics and control systems allows for more efficient using of this attribute. Regenerative braking system converts the kinetic energy of moving vehicles on this form of energy that you can store in a secondary source of energy. The most common form of energy after conversion is electricity, easy to store in batteries or supercapacitors. There also are known systems with storage of mechanical energy (high-speed flywheels with composite rotors). Drive systems with optional regenerative braking should take into account a number of aspects influencing the process. It is very important to maintain the stability of the vehicle movement during braking. Another important aspect is the cooperation of regenerative braking system with conventional, mechanical brake system of the vehicle driven by a single axis. Sizing of the electrical machine (or machines) is associated with the needs of the propulsion of the vehicle, which limits the amount of absorbed energy in the initial stage of braking. Individual elements of the system energy conversion efficiency chain complexity affect the energetic results of this process. On the energy, efficiency of the process of braking energy recovery affects string conversion efficiency in the individual components of the system. Regenerative braking is the important factor, which could improve electric vehicle market chances, particularly in the city or neighbourhood personal transport. The article contains a description of the technical and legal circumstances of the process of regenerative braking and energy aspects of this process.
Źródło:
Journal of KONES; 2016, 23, 4; 193-199
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Advanced batteries and supercapacitors for electric vehicle propulsion systems with kinetic energy recovery
Autorzy:
Juda, Z.
Powiązania:
https://bibliotekanauki.pl/articles/247243.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
lithium-titanate battery
regenerative braking
supercapacitor
electric vehicle
Opis:
For city and neighbourhood people transport, electric driven vehicle with advanced energy storage and electronic control system could be competitive for conventional transportation means. Advanced energy storage and full utilization of regenerative braking system leads to significant energy saving. Regenerative braking is particularly important in city traffic, where a lot of acceleration/braking cycles occur. Replacement of internal combustion engines driven cars with electric vehicles give various benefits: decrease of transport sector impact on climate warming by CO2 emission reduction and general human health condition increase by elimination of toxic exhaust gases components emission by passenger cars. Particular interest of EV research is focused on lithium based batteries and supercapacitors. Nano-Lithium-Titanate battery could be fully recharged in a very short time and current peaks have no damage impact on the battery. Such batteries have high Cycle Life value (25000) and long life calendar (20 years).Fast charging systems should be equipped with energy converter built inside charging station. The converter has to be based on intelligent control system, for charging parameters setting (stable voltage, charging current, charging time) for different electric vehicles. To estimating charge/discharge characteristic and regenerative braking effectiveness, a simulation in MATLAB environment has been performed based on factory parameters. Graphical simulations results are presented in the paper.
Źródło:
Journal of KONES; 2011, 18, 4; 165-171
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Studies of electric drive with hydrostatic support
Autorzy:
Grzesikiewicz, W.
Makowski, M.
Knap, L.
Pokorski, J.
Powiązania:
https://bibliotekanauki.pl/articles/243753.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
hybrid drive
energy consumption
energy efficiency
regenerative braking
city traffic
napęd hybrydowy
zużycie energii
efektywność energetyczna
hamowanie regeneracyjne
ruch miejski
Opis:
In this article, results of experimental studies concerning the relief of a city car electric drive by means of hydrostatic drive support are presented. Experimental studies were performed using a laboratory station built for this particular purpose. Studies of basic properties of elements of hydraulic system and resistances in the mechanical system were performed. The results of experimental studies of a chosen sub-assembly of hydrostatic drive (i.e. hydro-pneumatic battery) are given. The resistances within mechanical system (flywheel) were determined. In the considered hybrid drive, electric drive is cyclically supported by hydrostatic drive during acceleration or regenerative braking of the vehicle. The results of experimental studies presented in this article were obtained on a designed and built laboratory station representing a model of a lightweight delivery van for city traffic and equipped with the studied hybrid drive. The obtained results suggest that there is a possibility considerably to increase the effectiveness of energy conversion in the electric drive of the vehicle by means of hydrostatic support. By applying the hydrostatic support in the electric drive, the load on the electric battery decreased, which positively influences the length of operation time.
Źródło:
Journal of KONES; 2018, 25, 1; 265-274
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies