Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Gurney Flap" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Gurney flap and T-strip alternativesin application to typical aircraft steer surface
Autorzy:
Sieradzki, A.
Powiązania:
https://bibliotekanauki.pl/articles/247018.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
CFD
steer
stabilizer
Gurney flap
T-strip
stabilizator
listwa Gurneya
Opis:
Classic Gurney flap and double Gurney flap (called T-strip) are well-researched trailing edge modifications used in aerospace engineering. However, one of the inevitable effects of their use is the aerodynamic drag increase at low lift conditions, concerned as the major drawback of these solutions. This article presents Gurney flap and T-strip passive alternatives, which guarantee similar advantages in terms of e.g. lift enhancement, but without significant drag increase. Their aerodynamic analysis was performed on the application case of a typical symmetrical aircraft stabilizer with movable steer. Both solutions, consisting of plates nearly parallel to the direction of flow, were modelled as two-dimensional cases and CFD calculations were performed for specified range of angles of attack and steer deflections. Obtained aerodynamic characteristics allowed assessing the influence of selected modifications on the stabilizer effectiveness, as well as on hinge moment characteristics. The flow pattern changes in the presence of analysed devices were also investigated. In this way, performed analysis provided valuable information about the advantages and disadvantages of using of such devices in comparison to classic Gurney Flap and double Gurney flap. The results showed that using proposed solutions gives the possibility of significant reduction of the aerodynamic drag of the whole stabilizer at low lift conditions, while still maintaining favourable lift characteristics.
Źródło:
Journal of KONES; 2018, 25, 1; 347-354
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational investigations of active flow control on helicopter - rotor blades
Autorzy:
Stalewski, W.
Sznajder, K.
Powiązania:
https://bibliotekanauki.pl/articles/242558.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
rotorcraft
rotor aerodynamics
active flow control
Active Gurney Flap
URANS
ANSYS Fluent
Opis:
The paper presents results of the first stage of the research conducted within the frames of Active Rotor Technologies, which is the dynamically developed sub-domain of Rotorcraft Engineering. The research concerned a computational modelling and investigations of new solutions aiming at improvement of performance of modern helicopters and their environmental impact, by active control of operation of their rotors. The paper focuses on one of such solutions applied for the active control of airflow around helicopter-rotor blades. This solution is the Active Gurney Flap – a small, flat tab located at a pressure side of rotor blade near its trailing edge, which is cyclically deployed and stowed during rotation cycles of the blade. The Active Gurney Flap seems to be very promising solution which will enable helicopters to operate with reduced power consumption or reduced main rotor tip speed whilst preserving current flight performance capabilities, especially in terms of retreating blade stall. The newly developed methodology of computational modelling of active-flow-control devices, like Active Gurney Flap, applied for enhance a helicopter performance and improve its environmental impact, has been presented. Development of the methodology was the challenging task, taking into account strongly unsteady character of modelled phenomena and large differences of scales in both the space and time domain, where very small, dynamically deflected tab strongly influences the flow around rotating, large main rotor. Exemplary CFD simulations, presented in the paper, have been conducted to validate developed methodology.
Źródło:
Journal of KONES; 2014, 21, 2; 281-288
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies