Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ALE" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Numerical analysis of I-beam supporting structure with multimaterial protective panel - parametric study
Autorzy:
Damaziak, K.
Mazurkiewicz, Ł.
Małachowski, J.
Klasztorny, M.
Baranowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/246508.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ALE formulation
blast wave
dynamic response
protective panel
Opis:
Dynamic response of an I-beam supporting structure subjected to shock wave produced by the detonation of high explosive materials is presented in this paper. Dynamic response of structural components in different load cases-with multimaterial panel protection and without protection, subjected to blast wave from various charge weight and various distance stand-off was determined. LS-DYNA, a 3-D explicit, finite element computer code with Lagrangian-Eulerian coupling was used to study this behaviour. Also initial static load was taken into account as pre-stress field present in the column obtained using dynamic relaxation procedure. The protective panel is composed of fibreglass composite and aluminium foam. The composite orthotropic properties and the failure criteria for fibre and matrix damage as well as the stress-volumetric strain curve for metallic foam were taken into account. The previous study shows that critical to the structure durability are the plastic strains and the structure failure caused by high deformation. Results of the analyses indicate that application of the blast panel around the supporting structure increase the resistance and significantly reduce the plastic deformation of the structure. The pillar without protection can be destroyed by 2 kg TNT placed close to the structure. Analysed beam covered by the blast panel can resist over three times bigger charge without significant deformation of the structure.
Źródło:
Journal of KONES; 2012, 19, 3; 93-102
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Blast wave and suspension system interaction - numerical approach
Autorzy:
Baranowski, P.
Małachowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/247125.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
suspension system
pressure wave
SPH
ALE
FE modeling
Opis:
The main aim of this paper is to present the effective example of coupled experimental and numerical tests. Moreover, a development process of a numerical model of a terrain vehicle suspension system is presented. Experimental tests were carried out on the machine Instron 8802 with an assistance of the high-speed camera Phantom v12. Obtained stress-strain curves were applied into the FE model to estimate material constants for Mooney-Rivlin constitutive rubber model and for numerical failure criterion. Geometry of the tire and other suspension elements were achieved using reverse engineering technology. Due to the fact that a tire is such a complex structure to be represented with numerical methods, it was important to develop a discrete model of tire as much similar to the real one as possible. Consequently, an exact tire cords pattern was implemented into the FE model of the tire, which was obtained by the assistance of a microscope and X-ray device. In the next step, numerical analyses were performed simulating the TNT explosion under the suspension system with a simplified motor-car body. Nonlinear dynamic simulations were carried out using the explicit LS-Dyna code, with central difference scheme with modified the time integration of the equation of motion. In order to simulate the blast wave propagation the Smoothed Particle Hydrodynamics (SPH) method and Arbitrary Lagrangian-Eulerian formulation with Jones Wilkins Lee (JWL) equation defining the explosive material were used. Finally, results from both approaches were compared.
Źródło:
Journal of KONES; 2011, 18, 2; 17-24
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of selected structural components subjected to blast wave
Autorzy:
Mazurkiewicz, Ł.
Małachowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/248066.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ALE formulation
blast wave
dynamic response
structural component
Opis:
The phenomenon of high-energy explosion of a substance such as the mixture of flammable gases, explosives, etc. is highly exothermic chemical reaction that causes a blast wave consisting of hot gases at high pressure. Very complex nature of the phenomenon of detonation, affects the need for advanced methods of analysis. In the present work analysis of two steel columns (I-section and tubular section) subjected to the blast wave are presented. The columns have similar values of the moments of inertia and mass per unit length. To describe the complex phenomena occurring in gas medium the Eulerian formulation was used. The steel structures were described using Lagrangian formulation. Interaction between domains was achieved by numerical coupling algorithm with implemented penalty function. From the results from all the analysis cases, the dynamic response of structural elements was obtained. Permanent deformation and the amount of absorbed energy are of special interest in this study. The resultant velocity vectors were also presented to illustrate the characteristic of blast wave propagation.
Źródło:
Journal of KONES; 2012, 19, 1; 267-272
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of the shape of the explosive charge on blast profile
Autorzy:
Hryciów, Z.
Borkowski, W.
Rybak, P.
Wysocki, Z.
Powiązania:
https://bibliotekanauki.pl/articles/247727.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
cylindrical and rectangular charge
blast overpressure
blast impulse
LS-DYNA
ALE
Opis:
When an explosive charge is fired, the nature and mass of the explosive are the only parameters of importance usually considered. The shape however, also plays a major role in the effect of an explosive charge. Knowledge of shape effect can be important before the use of the explosive (in order to create a maximum effect with a given mass of explosive), or in post-explosion damage assessment. The shape effect however is only significant within a certain range from the charge. At longer distance, the produced blast wave tends to be spherical. The shock wave parameters studied in this work are the peak overpressure and the first positive impulse. A series of numerical test has been performed in order to determine the range of influence of the charge shape. Different locations of initiation were compared. A hemispherical charge was point detonated at its centre whereas a cylindrical shape was detonated at the centre of an upper or lower plane. Numerical simulations of near field burst were conducted using LS-DYNA software. During numerical tests a pressure fields were determined for different shapes of explosive charges as well as the pressure waveforms at points located 1000 mm from a centre. Additionally, reference pressure history curves from LOAD_BLAST_ENHANCED procedure were calculated.
Źródło:
Journal of KONES; 2014, 21, 4; 169-176
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies