Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genetic fuzzy system" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
A genetic fuzzy approach to estimate operation time of transport device
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/247484.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
failure prediction
fuzzy genetic system
material handling system
Opis:
The classic approach to evaluate the probability that an operational system is capable to operate satisfactorily and successfully perform the formulated tasks is based on availability that is coefficient which is determined based on the history of down-time and up-time occurring, while the risk-degree of down-time occurring strongly depends on the actual operational state of a system. The intelligence computational methods enable to create the diagnosis tools that allow to formulate the prognosis of operating time of a system and predict of failure occurring based on the past and actual information about system's operational state, especially genetic fuzzy systems (GFSs) that combine fuzzy approximate reasoning and capability to learn and adaptation. The paper presents the fuzzy rule-based inference system used to predict the operating time of exploitation system according to the specified operational conditions. The proposed algorithm was used to design the fuzzy model applied to estimate the operating time of a system between the actual time and predicted time of the next failure occurring under the stated operational parameters. The fuzzy system allows to prognoses the time of the predicted failure based on the operational parameters which are used to evaluate the actual operational state of the system. The attention in the paper is focused on the evolutionary computational techniques applied to design the fuzzy inference system. The paper proposes the genetic algorithm based on the Pittsburgh method and real-valued chromosomes used to optimize the knowledge base and parameters of antecedents and conclusions of the Takagi-Sugeno-Kang (TSK) fuzzy implications. The paper is the contribution to the GFSs, which aim is to find an appropriate balance between accuracy and interpretability, and also contribution to the research field on the diagnosis methods based on soft computing techniques. The evolutionary algorithm was tested for designing the fuzzy operating time predictor of material handling device.
Źródło:
Journal of KONES; 2011, 18, 4; 601-608
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic fuzzy approach to adaptive crane control system
Autorzy:
Smoczek, J.
Powiązania:
https://bibliotekanauki.pl/articles/243018.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
anti-sway crane control
pole placement
fuzzy logic
genetic algorithm
Opis:
In automated manufacturing processes the safety, precise and fast transfer of goods realized by automated material handling devices is required to raise efficiency and productivity of manufacturing process. Hence, in those industrial branches where cranes are extensively used the problem of an anti-sway crane control is especially important to speed-up the time of transportation operations and ensures the safe and effective transportation operations. The precise positioning of a cargo requires controlling the speed of crane motion mechanisms to reduce the sway of a payload. Moreover, the anti-sway crane control scheme involves applying the adaptive techniques owing to the nonlinearities of a system that comes especially from stochastic variation of rope length on which a payload is suspended and mass of this payload. The paper provides the design method of an adaptive control system for a planar model of crane. The control system is based on the gain scheduling control scheme created using fuzzy logic controller with Takagi-Sugeno-Kang-type fuzzy implications. The design process of a gain scheduling control system consists in selecting such a suitable set of operating points at which the linear controllers are determined that interpolation control scheme ensures the expected control quality within the known range of nonlinear system parameters changes, when those parameters vary in relation to the exogenous variables: rope length and mass of a payload. The method that is proposed in this paper to solve the problem of designing the fuzzy gain scheduling crane control system for minimum set of operating points is based on the pole placement method and genetic algorithm.
Źródło:
Journal of KONES; 2012, 19, 4; 577-584
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies