Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "aluminium and alloys" wg kryterium: Wszystkie pola


Wyświetlanie 1-6 z 6
Tytuł:
Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by FSW
Autorzy:
Dudzik, K.
Charchalis, A.
Powiązania:
https://bibliotekanauki.pl/articles/246888.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
friction stir welding (FSW)
aluminium alloys
joints
welding
mechanical properties
shipbuilding
Opis:
The article presents the research results on the mechanical properties of aluminum alloy 7020 and its friction stir welded (FSW) joints. For comparison alloy 5083 – the most currently used in shipbuilding alloy was chosen as well as 5059 - the new high-strength alloy. Besides the native material alloys there were investigated their joints welded by FSW - the same method as alloy 7020. Welding parameters used for the connection of the sheets made of 7020, 5083 and 5059 alloys were presented. Metallographic analysis showed the correct construction of structural bonded joints. Friction Stir Welding (FSW) – a new technology can be successfully used for butt welding of different types of aluminum alloy sheets. FSW method can be an alternative to traditional arc welding methods i.e. MIG or TIG. The research was carried out using a static tensile test in accordance with the requirements of the Polish Standards PNEN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of + 20ºC. The 7020 alloy has higher strength properties then alloys: 5083 and 5059. The yield stress is higher by 14.8% compared to 5083 alloy, and by 11.7% compared to the alloy 5059. Plastic properties of an alloy 7020 are the lowest, but with reserves meet the requirements of classification societies. The joints welded by FSW of 7020 alloy have higher strength properties then joints of alloys: 5083 and 5059. The yield stress achieves the highest value for alloy 7020 and is 24.2% higher than for 5083 alloy and 11.5% for the 5059 alloy. Despite the strength properties also plastic properties are best for 7020 alloy joints.
Źródło:
Journal of KONES; 2013, 20, 2; 69-73
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by MIG
Autorzy:
Dudzik, K.
Powiązania:
https://bibliotekanauki.pl/articles/245438.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
welding MIG
aluminum alloys
mechanical properties
Opis:
The article presents the research results on the mechanical properties of aluminum alloy 7020 and its MIG welded joints. For comparison alloy 5083 - the most currently used in shipbuilding alloy was chosen as well as 5059 -the new high-strength alloy. Besides the native material alloys there were investigated their joints welded by MIG -the same method as alloy 7020. Welding parameters used for the connection of the sheets made of 7020, 5083 and 5059 alloys were presented. Metallographic analysis showed the correct construction of structural bonded joints. The arc welding method - MIG is the most common method of joining aluminum alloys used in shipbuilding. It replaces the TIG method of providing equally high quality of joints with a much higher performance. The research was carried out using a static tensile test in accordance with the requirements of the Polish Standard PN-EN 10002:2004. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of + 20 centigrade. The 7020 alloy has higher strength properties then alloys: 5083 and 5059. The yield stress is higher by 14.8% compared to 5083 alloy, and by 11.7% compared to the alloy 5059. Plastic properties of an alloy 7020 are the lowest, but with reserves meet the requirements of classification societies. The joints welded by MIG of 7020 alloy have higher strength properties then joints of alloys: 5083 and 5059. Plastic properties of alloy 7020 compared to 5083 alloy are smaller and at the same level as the connector alloy 5059.
Źródło:
Journal of KONES; 2011, 18, 3; 73-77
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The application of friction stir welding (FSW) of aluminium alloys in shipbuilding and railway industry
Autorzy:
Gesella, G.
Czechowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/245646.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
Friction Stir Welding
FSW
aluminium alloys
welding
shipbuilding industry
mechanical properties
Opis:
The article describes possibilities of application of friction stir welding (FSW) in shipbuilding and railway industry. Actually, in these sectors of industry more and more often modern construction materials are used. The biggest restriction of implementing new materials is technological possibility of joining them. One of construction materials used in the shipbuilding is aluminum, mainly its alloy of 5xxx-aluminium-magnesium series. Its application is justified by good corrosion resistance in seawater and good mechanical attributes. Thanks to susceptibility to plastic treatment, one gains good mechanical attributes with thrice-smaller density than a density of steel, what causes triple reduction of weight of aluminum construction relative to steel one. Alloys of 5xxx series are well weldable. It is generally known that welding is not a good way to joint metals, especially the aluminum. The application of FSW with mixing allows one to change approach to production of aluminum constructions. Using aluminum plates prefabricated with FSW method allows one to reduce time needed for installation of construction and considerably decreases the production costs. The article describes technology and directions of development of friction welding of aluminum alloys of 5xxx series using FSW method. There is also shown analysis of its usefulness in ship and railway industry and comparison of mechanical attributes of weld made with electric arc using MIG (135), TIG (141) method and FSW method.
Źródło:
Journal of KONES; 2017, 24, 2; 85-90
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Properties of AW 5059 aluminium alloy joints welded by mig and Friction Stir Welding (FSW)
Autorzy:
Czechowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/243771.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
friction stir welding (FSW)
mechanical properties
aluminium alloys
stress corrosion cracking
Opis:
The article presents the results of the mechanical properties of aluminium alloy AW 5059 [AlMg5.5Zn] welded by MIG and friction stir welding FSW. Friction Stir Welding (FSW) – a new technology can be successfully used for butt welding of different types of aluminium alloy sheets. Research results on stress corrosion cracking for the AW 5059 alloy welded joints are presented. Stress corrosion cracking was examined via the slow-strain-rate-testing (SSRT) according to EN ISO 7539-7. The following parameters were measured: time-to-failure, obtained max. load, strain energy (the diagram surface under the stress-elongation curve), relative elongation of the specimen, tensile stress and reduction-in-area. The fractures were analysis by scanning electron microscope of Philips XL 30 type. Tests were carried out in the air and in a 3.5% water solution of NaCl – artificial sea water. On the basis of obtained test results, it can be said that 5059 alloy joints welded by FSW are resistant to stress corrosion in sea water. Tests have shown that the 5059 alloy, welded by FSW, has superior strength properties compared to the FSW 5083 alloy, along with comparable, good resistance to stress corrosion. Original value are received results of the mechanical and corrosion properties of a new method friction stir welding used for joining AW 5059 alloy sheets.
Źródło:
Journal of KONES; 2013, 20, 3; 125-129
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanical properties of AW-5083 alloy joints welded by hybrid method : FSW and MIG
Autorzy:
Dudzik, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/241583.pdf
Data publikacji:
2019
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
hybrid welding
Friction Stir Welding
FSW
welding
MIG
aluminium alloys
joints
mechanical properties
shipbuilding
Opis:
The article presents the research results on the mechanical properties of aluminum alloy AW-5083 and its joints welded by hybrid method – traditional MIG and FSW. AW-5083 alloy is the most currently used in shipbuilding industry. Friction Stir Welding (FSW) – a new technology can be successfully used for butt-welding of different types of aluminum alloy sheets. FSW method can be an alternative to traditional arc welding methods i.e. MIG or TIG. Hybrid welding (FSW with MIG or TIG) could be used in cases when joining only by FSW is not possible. Welding parameters used for the connection of the sheets were presented. Metallographic analysis showed the correct construction of structural bonded joints. The research was carried out using a static tensile test in accordance with the requirements of the Standard PN-EN ISO 4136:2013-05. Flat samples cut perpendicular to the direction of rolling were used. The research was conducted at the temperature of +20ºC. The test shows that the mechanical properties of joints made by hybrid method compered to native material were lower. The tensile strength of joint was lower by 20% then native material 5083 while its yield stress was lower only about 6%. The biggest change was observed in case of plastic properties. Elongation of joint was over 50% lower compared to native material. Despite the decrease of mechanical properties, they meets the requirements of classification societies, so the conclusion is that hybrid method (FSW and MIG) of joining AW-5083 can be applied in shipbuilding industry.
Źródło:
Journal of KONES; 2019, 26, 4; 47-52
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microscopic examination of AlZn5Mg1 alloy joints welded by FSW and MIG
Autorzy:
Dudzik, K.
Charchalis, A.
Jurczak, W.
Powiązania:
https://bibliotekanauki.pl/articles/247908.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
microscopic examination
aluminium alloys
friction stir welding (FSW)
MIG welding
grain size
Opis:
The article presents the research results of microscopic examination of friction stir welded joint (FSW) alloy AW 7020 (AlZn5Mg1). The joints welded by traditional MIG method of the same aluminium alloy were chosen as reference points. Friction stir welding (FSW) - a new technology can be successfully used for butt welding of sheet metal with different types of aluminium alloys. The parameters of friction stir welding (FSW) and MIG welding used to join metal alloy AlZn5Mg1 (7020) were presented. Welds made using both the FSW and MIG method were checked using X-ray flaw detection and showed no welding defects. In order to determine the structural changes in the bonded joints, the samples were polished and then microetched KELLER reagent. Metallographic examination was carried out using optical microscope Axiovert ZAISS 25. To determine the grain size in the different zones of joints welded by FSW and MIG methods AxioVision 4.8.2 software was used. Metallographic examination revealed the existence of an explicit heat affected zone of HAZ in case of MIG welded joints and virtually lack thereof, in case of FSW welded joints. Microscopic examination of AlZn5Mg1 alloy joints showed that the structure of the FSW welded joint is more homogeneous than the MIG welded joint. The analysis of the grain size of the characteristic zones of joints shows that in the case of joints welded by FSW the weld nugget has smaller grains than the native material. In case of the joint welded by traditional MIG method the biggest grains are in HAZ and the smallest in the native material.
Źródło:
Journal of KONES; 2012, 19, 2; 129-135
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies