Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Świderski, W." wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Influence of thermal signal characteristics on defect detection in GFRP by active optical thermography
Autorzy:
Świderski, W.
Powiązania:
https://bibliotekanauki.pl/articles/247929.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
non-destructive testing
composite material
IR thermography
badania nieniszczące
materiał kompozytowy
termografia IR
Opis:
Advances in technological development, since the 1990s, has been associated with the development of two basic domains of knowledge: information technology and material engineering. The development of material engineering is directly related to composite materials. One group of composite materials are fibre-reinforced composites. Due to their unique properties, they are used in various fields of engineering sectors. Composites reinforced with glass fibre (GFRP) are the second most commonly used composite after carbon fibre reinforced composites (CFRP). GFRP in many cases can replace traditional structural materials, which are usually made from metal. Of course, this material is exposed to damage both in production and operation phases. One method of non-destructive testing that effectively identifies defects in GFRP is active optical thermography. In this method, for thermal stimulation of the tested material, various types of heat sources are used for example: heating lamps, lasers etc. This article analyses the influence of the characteristics of the thermal optical sources on detection of typical defects in GFRP.
Źródło:
Journal of KONES; 2018, 25, 1; 379-383
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of very thin defects in CFRP by the lock-in thermography method
Autorzy:
Świderski, W.
Powiązania:
https://bibliotekanauki.pl/articles/247348.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
non-destructive testing
composite material
IR thermography
Opis:
Quick development of constructional composite materials application is caused by their excellent mechanical and strength-related properties, combined with a low specific weight. One of the basic groups of reinforcement materials in composites are carbon fibres discovered back in 19th century. The main reason of defects in structures of composite materials is the variability of working charges in constructions during the process of using. Existed defects are complicated because of the effects like loss of continuity of reinfused fibres, binder cracks and loss of fibres adhesiveness to binder. Diagnostic methods, which are effective with relation to metals became little effective when used in detection of defects in composite materials. This caused greater interest of diagnostic techniques with using infrared thermography. Lock-in thermography is one of NDT methods providing phase images of thermal waves in a sample leading to receiving a distribution of internal defects and allowing for thermal properties evaluation. We used lock-in thermography in connection with modulated thermal source synchronized with the IR image acquisition camera. It was prepared sample of multilayer structure carbon composite with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were searches. The results are reported in the paper.
Źródło:
Journal of KONES; 2016, 23, 1; 385-390
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non - standard methods of data processing in thermographic non - destructive testing of light ballistic protections
Autorzy:
Swiderski, W.
Szudrowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/247994.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
light ballistic protection
IR thermography
non-destructive testing
data processing
Opis:
IR thermography is a technique used to detection, registration, processing and visualization of invisible infrared radiation emitted by a tested object. Image (thermogram) is a result of this technique and it maps the distribution of temperature on surface of tested object. The image after entering in digital form into the computer needs to get certain treatments on it to separate information of interest through its processing. A characteristic feature of image processing is that the image exists at either the input or output of information processing. The output images should be free from disturbances and they should have distinctly separated features of interest. After the initial processing of the image, the next steps of its analysis follow. In the result of the analysis quantitative data is received that describes some determined features of the image and the complete image comprising hundreds details is substituted by a limited population of separated features. This population can be used effectively by different recognition methods and algorithms. In thermographic investigations, situations occur when treatment of images applied in standard software is not fully efficient to obtain information, which is "camouflaged" in taken thermogram. Such event takes place particularly in the case of looking for thermal "disturbances" onto the surface, which are caused by the undersurface defects. Such situation needs the application of special transformations carried out on thermograms. These transformations lead to selecting from all information included in the thermogram only such part of it that is essential from the point of view of conducted tests. In such case it is required the usage of advanced data processing techniques like thermal tomography, one-dimensional Fourier analysis, principle component analysis (PCA), an approximation by means of polynominals, wavelet analysis, neural network and reconstruction of thermographic signal. In this paper, these methods are described and examples of their use in tests of light ballistic protections are presented.
Źródło:
Journal of KONES; 2012, 19, 1; 431-440
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aramid composites after fragment-proof test by ultrasonic ir thermography
Autorzy:
Pracht, M.
Świderski, W.
Powiązania:
https://bibliotekanauki.pl/articles/245923.pdf
Data publikacji:
2017
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
ultrasonic IR thermography
composite material
aramid fabrics
ballistic protection
Opis:
Modern soft ballistic armour is composed of high-strength fibres often used as packages of loose fabrics or laminates. These fibres include carbon, glass fibres, polymer fibres including aramid fibres and polyethylene fibres. Soft armour is applied to provide ballistic protection typically against the impact of small arms projectiles and fragments. In order to determine the level of ballistic protection for ballistic armour, fragment-simulating projectiles (FSP) are used which simulate the properties of fragments created during the explosion of various types of grenades and projectiles. The above-mentioned composites can include a variety of defects such as manufacturing defects, moisture ingress, projectiles impact and other defects. Infrared thermography is a method, which can be used to non-destructive testing and detecting defects of this type of material. However, ultrasonic stimulation is one of method of thermal stimulation used for detection defects in composite. The article presents the results of experimental research of multilayer aramid composite after fragment-proof tests by ultrasonic IR thermography method.
Źródło:
Journal of KONES; 2017, 24, 2; 191-195
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measuring temperature distribution on the surface of flying missiles
Autorzy:
Szklarski, A.
Świderski, W.
Machowski, B.
Powiązania:
https://bibliotekanauki.pl/articles/245906.pdf
Data publikacji:
2015
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
missiles
wind tunnel
thermal field
boundary layer
Opis:
There are problems associated with flight of objects such as rockets after exceeding sound barrier. One of them is heating up their body during the flight, especially at low altitudes. Overheated surface of rocket leads to serious consequences, such as rapid destruction of material components of missile. It could cause an interference with target tracking signal if it is on the spectral range of missile optoelectronic detecting head. It can cause destruction of flying missile in extreme cases. In addition, temperature increase causes an increase of drag force of object what directly influences its ballistic parameters. The subject of the paper is to present a concept of experimental set-up to test the heating of missile body at flight. The set-up is based on a wind tunnel. Four missiles were selected for initial analysis in order to test some typical designs for significantly different flight velocities and aerodynamics. Boundary layer at flow around the surface, determining temperature field of missile, the local distribution of heat transfer coefficients on the sphere and exemplary distribution of temperature and pressure on the sphere during flow around, distribution of Nusselt numbers for different velocities of flow around roll, numerical model of rockets, distribution of Mach number, temperature field and velocity vectors are presented.
Źródło:
Journal of KONES; 2015, 22, 2; 233-239
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
IR Thermography methods on nondestructive testing of ballistic covers made of multi - layer carbon fiber
Autorzy:
Hłosta, P.
Świderski, W.
Szudrowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/244251.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
IR thermography
light armour
CFRP composite
nondestructive testing
Opis:
Presently a lot of designs of light armours are based mainly on the multilayer composite materials. Thanks to these materials it was possible to achieve highest levels of ballistic resistance of specific armour at limited weight. The weight (area density) and the performance have direct influence on the value of combat ability of equipment and soldiers. Carbon fibers are basic types of reinforcement used in composites. They have many technical applications including light ballistic covers where they are mostly used as multi-layer composite materials constituting a structure made of several interconnected layers or many layers of carbon fibers, or in combination with other materials. Light ballistic covers have usually thickness of several to 10-20 mm and potential defects occurring in them have thermo-physical properties definitely different than materials they are made of so the non-destructive tests using thermography methods may be effective in detecting these defects. The main methods of active thermographic tests are as follows [1, 2]: - Pulsed Thermography – PT, - Step Heating Thermography – SHT, - Lock-in Thermography – LT, - Vibrothermography – VT. In the paper an application of Step Heating Thermography and Vibrothermography to detection of delaminating area of CFRP composites after mechanical impacts is presented.
Źródło:
Journal of KONES; 2013, 20, 2; 167-173
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Possibility of defects detection by ir thermography in multi-layered polyaramide materials used for military applications
Autorzy:
Panas, A.
Pracht, M.
Świderski, W.
Powiązania:
https://bibliotekanauki.pl/articles/242822.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
infrared thermography
non-destructive testing
composite material
aramide fabrics
light armours
Opis:
Recently the composite materials have been often applied in designs of light ballistic protections as the progress in domain of polymers chemistry has made possible the production of materials providing efficient protection against small arms bullets and fragments. Usually the composites apply textile materials joined with plastic what creates multi-layered composite materials used for personal ballistic protections (vests and helmets for shots and fragments protection) and armours of car vehicles and stationary objects. This type of composite materials is largely made on the basis of very resistant aramid and polyethane fibres joined with phenolic and polyurethane resins and other elastic mixtures. These materials are characterized as lightweight, non-corrosive and easy to form what makes them fit well to the surface, which they have to protect. Defects, which can appear in this type of multi-layered composite materials usually, are inaccuracies in gluing the composite layers and stratifications and delaminations occurring under hits of fragments and bullets. A method that possibly can be used to non-destructive testing of this type of materials and detection of internal defects deploys infrared thermography. In order to determine the potential use of thermal methods the specialized software was developed for computing 3D (three-dimensional) dynamic temperature distributions in anisotropic multi-layered solid body with subsurface defects. The paper includes some results of simulation representing possibilities for the use of IR thermography methods to test such composite materials.
Źródło:
Journal of KONES; 2014, 21, 2; 243-250
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies