Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "correlation index" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Spatiotemporal analysis of air quality and its relationship with meteorological factors in the Yangtze River Delta
Autorzy:
Li, Y.
Chen, Y.
Karimian, H.
Tao, T.
Powiązania:
https://bibliotekanauki.pl/articles/1192096.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie / Polskie Towarzystwo Magnezologiczne im. Prof. Juliana Aleksandrowicza
Tematy:
YRD
air quality index
meteorological elements
correlation analysis
air pollution
spatial analysis
Opis:
Air quality is closely related to people’s health and life. In addition to being directly affected by social activities and atmospheric emissions, the impacts of meteorological factors are also significant. Based on daily Air Quality Index (AQI) data and various meteorological parameters in the Yangtze River Delta (YRD), this paper summarized the spatiotemporal evolution characteristics of AQI over YRD, and quantitatively analyzed the contribution of different meteorological elements to air quality. We also evaluated different spatial interpolation methods to produce surface distribution of AQI, and noted that the Ordinary Kriging outperformed other methods. The spatial distribution of AQI in YRD showed seasonal and annual variations. However, the days with AQI over 100 (level ii) were mostly observed in winter. Generally, more severe air pollution was observed in the northern part of YRD than in the southern ones, for example the air quality of the Ningbo metropolitan area was the best, while in Hefei it was the worst. It was found that meteorological parameters have spatially varying effects on AQI. For instance, pressure has a significant positive effect on AQI, and others showed negative correlations. We also predicted AQI by exploiting different machine learning-based models. Through model comparison, it was found that the Autoregressive Integrated Moving Average Model – ARIMA (0,1,2) has higher prediction accuracy for AQI than Multiple Linear Regression (MLR). The findings of this research can be used in future forecasting of air pollution, and also in air pollution controlling programs.
Źródło:
Journal of Elementology; 2020, 25, 3; 1059-1075
1644-2296
Pojawia się w:
Journal of Elementology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies