Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pond water" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Implementation of an Integrated Floating Wetland and Biofilter for Water Treatment in Nile Tilapia Aquaculture
Autorzy:
Somprasert, Somanas
Mungkung, Sattaya
Kreetachat, Nathiya
Imman, Saksit
Homklin, Supreeda
Powiązania:
https://bibliotekanauki.pl/articles/1955489.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
aquaculture
biofilter
fish pond water
floating wetland
Opis:
Due to the high nutrient and organic matter contents of fish pond water, the water must be treated before disposal to prevent the eutrophication and deterioration of natural receiving waters. Floating wetlands (FTWs) and biofilters are environmentally friendly ecological treatments that can be used for this water. Thus, this study aimed to investigate the performance of FTWs with biofilters (FTW/Bs) for nutrient and organic compound removal. Two FTW/ Bs were applied in a pond with 5,000 Nile tilapia. The macrophyte species in the FTWs were Cyperus (Cyperus spp.) and Heliconia (Heliconia spp.). The buoyant mats of the FTWs were made from bamboo, and 200 bioballs were loaded below the mats. The water quality parameters in the pond were monitored for 5 weeks between the control test without the FTW/Bs and the experimental test with FTW/Bs at sites 1 (S1) to 8 (S8). The FTW/Bs were located at sites 2 (S2) and 3 (S3). The results showed reductions in all water quality parameters except orthophosphate (ortho-P) at S2 and S3. The COD, BOD, NH4-N, and SS at S2 and S3 parameters during the experimental test were significantly lower than those during the control test, in the ranges of 20.34–33.96, 25.47–29.41, 25.86–27.87, and 26.00–28.44%, respectively.
Źródło:
Journal of Ecological Engineering; 2021, 22, 8; 146-152
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Indonesias Natural Zeolite as an Adsorbent for Toxic Gases in Shrimp Ponds
Autorzy:
Anggoro, Didi Dwi
Sumantri, Indro
Buchori, Luqman
Powiązania:
https://bibliotekanauki.pl/articles/1838361.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
shrimp pond water
adsorption
zeolite
ammonia
hydrogen sulphide
Opis:
The objective of this research was to produce safe water for shrimp by using zeolite as adsorbent to absorb unwanted substances (NH3 and H2S). In particular, this study also aimed to design the shrimp pond water treatment equipment, effect of flow rate on zeolite ability to absorb toxic gases (NH3 and H2S), and rate of absorption (K) and reaction (k). The adsorbent is zeolite which has adsorption properties, high surface area and pores suitable for water (3Å). Then, the concentration of ammonia, hydrogen sulfide was analyzed using Ammonia Test Kit and Hydrogen Sulphide of Hach Hydrogen Sulfide Test Kit. The materials used in this study were zeolite of Malang (East Java, Indonesia) and shrimp pond water. The best result of NH3 and H2S adsorption obtained at a flow rate of 3 L•min-1. The best adsorption constant value (K) achieved by a flow rate of 3 L•min-1. On the basis of the best value of R2, NH3 and H2S adsorption, it can be classified in the first-order kinetic model with R2 of 0.9763 and a k value of 0.0007 hours-1 with a flow rate of 6 L•min-1. From the data above, it can be calculated that the adsorbent needed in the adsorption of NH3 and H2S in a scale shrimp pond requires 18 kg of Malang zeolite with a column height of 3.62 m of adsorbent, a diameter of 2.07 m, and a column volume of 12.21 m3.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 202-208
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Indonesias Natural Zeolite as an Adsorbent for Toxic Gases in Shrimp Ponds
Autorzy:
Anggoro, Didi Dwi
Sumantri, Indro
Buchori, Luqman
Powiązania:
https://bibliotekanauki.pl/articles/1838278.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
shrimp pond water
adsorption
zeolite
ammonia
hydrogen sulphide
Opis:
The objective of this research was to produce safe water for shrimp by using zeolite as adsorbent to absorb unwanted substances (NH3 and H2S). In particular, this study also aimed to design the shrimp pond water treatment equipment, effect of flow rate on zeolite ability to absorb toxic gases (NH3 and H2S), and rate of absorption (K) and reaction (k). The adsorbent is zeolite which has adsorption properties, high surface area and pores suitable for water (3Å). Then, the concentration of ammonia, hydrogen sulfide was analyzed using Ammonia Test Kit and Hydrogen Sulphide of Hach Hydrogen Sulfide Test Kit. The materials used in this study were zeolite of Malang (East Java, Indonesia) and shrimp pond water. The best result of NH3 and H2S adsorption obtained at a flow rate of 3 L•min-1. The best adsorption constant value (K) achieved by a flow rate of 3 L•min-1. On the basis of the best value of R2, NH3 and H2S adsorption, it can be classified in the first-order kinetic model with R2 of 0.9763 and a k value of 0.0007 hours-1 with a flow rate of 6 L•min-1. From the data above, it can be calculated that the adsorbent needed in the adsorption of NH3 and H2S in a scale shrimp pond requires 18 kg of Malang zeolite with a column height of 3.62 m of adsorbent, a diameter of 2.07 m, and a column volume of 12.21 m3.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 202-208
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal and Oxygen Conditions in Carp Ponds During the Summer Period
Autorzy:
Wiśnios, M.
Kanownik, W.
Powiązania:
https://bibliotekanauki.pl/articles/124350.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
fish pond
dissolved oxygen
water temperature
Opis:
The work presents changes of oxygen indices in carp ponds during the summer season. The basis of the research were regular water tests conducted in two ponds: Mydlniki II intended for carp farming in the second year of fish production cycle and Bocian used for carp farming in the third (final) year of breeding. The temperature of pond water in July and August was optimal for development and farming of cyprinid fish and ranged from 16.6 to 30.5 °C. The lowest value of oxygen dissolved in water (6.4 mg·dm sup>-3) was registered in Mydlniki II pond and was higher than the oxygen optimum for carp (5 mg·dm sup>-3). Oxygen saturation in water of fish ponds exceeded the optimum upper limit value (168%) on a few dates, however, it posed no lethal threat for fish. In August in Bocian pond oxygen saturation fell within the range of optimal values, creating better conditions for fish development. In the secondary pond (Mydlniki II) it was found that oxygen saturation in water on 12 dates was lower than the low optimal value (96%).
Źródło:
Journal of Ecological Engineering; 2015, 16, 5; 144-150
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies