Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mine drainage" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
The Forming of Acid Mine Drainage Based on Characteristics of Coal Mining, East Kalimantan, Indonesia
Autorzy:
Widayati Amy, Sri
Dani, Umar
Nu'man, Harits
Muslim, Dicky
Nasruddin, Dudi
Nuryahya, Himawan
Nurhasan, Rully
Agustin, Daryl Sarah
Powiązania:
https://bibliotekanauki.pl/articles/27323828.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
coal
sulfur
acid mine drainage
NAPP
net acid production potential
Opis:
As one of the world’s coal producers, Indonesia continues to increase its coal production. The purpose of this study is to identify and analyze the characteristics of coal that has the potential to produce acid mine drainage. The research method is coal mapping and zoning based on formation, observation, and description of coal characteristics, coal sampling, ultimate and proximate testing, and analysis. The results of the study describe the characteristics of coal related to distribution in the early stages of evaluating the potential for acid mine formation, besides that it can be used as a basis for classifying the potential for acid mine drainage which has a high enough total sulfur based on the results of testing on 15 samples. To prevent the reaction to acid mine drainage, it can be based on the geochemical characteristics of coal by constructing a mine reservoir or making water drainage in a mine that is not close to the stockpile, because there is a possibility that water has the potential to form acid mine drainage (AMD) when it comes in contact with coal potential. So that coal does not have the potential to be a source of acid mine drainage.
Źródło:
Journal of Ecological Engineering; 2023, 24, 7; 301--310
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Active Physical Remediation of Acid Mine Drainage: Technologies Review and Perspectives
Autorzy:
Mulopo, Jean
Powiązania:
https://bibliotekanauki.pl/articles/2105273.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
ion-exchange
acid mine drainage
electrochemical
adsorption
membrane process
active physical treatment
Opis:
The successful acid mine drainage (AMD) treatment needs site-specific installation and implementation, as well as the deployment of technology that is compatible with the pollutants contained in the AMD. If key by-products of the AMD can be recovered, the financial sustainability of the AMD remediation method may be greatly improved. Additional research into novel and innovative solutions is necessary to advance in this direction. To accomplish this, it is necessary to have a complete awareness of current remediation technologies that are available and accessible. Active physical treatment methods such as ion exchange, adsorption, electrochemistry, and membrane techniques were examined in this article. Membrane technology excels in terms of ease of use, versatility, and environmental effect but produces brine streams the management of which remains vital for future adoption of the technology. Liquid membranes (LM), Micellar Enhanced Ultra-Filtration (MEUF), and Polyelectrolyte Enhanced Ultra-Filtration (PEUF) are all innovative membrane technologies that may provide some possibilities for metal recovery from chemical sludge and/or brine streams. Electrochemical technologies are considered an attractive alternative for AMD treatment, because they require only electricity as a consumable and can treat AMD to high standards by removing metals via (co)precipitation and sulfate via ionic migration (when an anion-exchange membrane is used in the configuration), while producing significantly less sludge. However, the accepted shortcomings include membrane/electrode fouling produced by (co)precipitates on the active surfaces necessary for the process, a lack of understanding regarding the effective scaling up to industrial scale, and the relatively expensive capital expenditure (CAPEX) required. The removal of heavy metals from AMD effluents by adsorption has a number of technical and environmental benefits, including high efficiency, and environmental friendliness. Despite its benefits, this technique has certain hurdles, such as the production process for low-cost adsorbents.
Źródło:
Journal of Ecological Engineering; 2022, 23, 6; 148--163
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Distribution of Trace Elements, Rare Earth Elements and Ecotoxicity in Sediments of the Kosva Bay, Perm Region (Russia)
Autorzy:
Ushakova, Evgeniya
Menshikova, Elena
Blinov, Sergey
Vaganov, Sergey
Perevoshchikov, Roman
Powiązania:
https://bibliotekanauki.pl/articles/2086373.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
trace element
rare earth elements
sedimentation
bottom sediment
ecotoxicity
acid mine drainage
Opis:
Over a long period of time, a huge amount of technogenic bottom sediments has been accumulating in the Kosva Bay with significant concentrations of amorphous iron and aluminium hydroxides, which, in turn, are active sorbents of pollutants. This study examines the distribution of trace elements and rare earth elements and their toxicity in the Kosva Bay of the Kama Reservoir (Perm Region, Russia). In the middle reach, the Kosva River crosses the Kizel coal basin, where acid mine water is discharged from closed mines. The average content of trace elements in the samples of bottom sediments of the bay varies from 0.10 mg/kg (Se) to 176.36 mg/kg (Ba). The amount of rare earth elements varies from 66.8 to 83.6 mg/kg. The ecological significance of trace elements and rare earth elements was studied using an element-by-element assessment (EF and Igeo), Potential Ecological Risk Index (RI), Mean Probable Effect Concentration Quotient (PECQ), and two bioassays (Daphnia magna Straus and Scenedesmus quadricauda (Turp.) Breb. The highest Hg enrichment was found at two sampling points. Taking into account the average value of Igeo, the pollution by Co, V, Nb, Hg, Sn, Zn, Sm, Ni, Cr, and Gd is the highest and corresponds to extremely contaminated category. The RI values indicate that pollution categories vary from moderate risk to considerable risk. According to mean PECQ values, bottom sediments of the bay have moderate potential toxicity towards biological communities. Results of chronic and acute toxicity on test objects D. magna and Scenedesmus quadricauda Breb show the water extract from bottom sediments having no effects on the test objects. The results of the study show that in order to assess the quality of bottom sediments, an integrated approach, combining chemical and ecotoxicological analyses, is needed.
Źródło:
Journal of Ecological Engineering; 2022, 23, 4; 1--16
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modification of Calcium Oxide from Green Mussel Shell with Iron Oxide as a Potential Adsorbent for the Removal of Iron and Manganese Ions from Acid Mine Drainage
Autorzy:
Purwaningrum, Widia
Hasanudin, Hasanudin
Rachmat, Addy
Riyanti, Fahma
Hariani, Poedji Loekitowati
Powiązania:
https://bibliotekanauki.pl/articles/2202252.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
CaO/Fe3O4
green mussel shell
adsorption
iron
manganese
acid mine drainage
Opis:
Acid mine drainage (AMD) has the characteristics of high heavy metal ion content and low pH. This study aimed to synthesize the CaO/Fe3O4 composite for the adsorption of iron and manganese ions from acid mine drainage. CaO was synthesized from the shells of green mussels (Perna viridis). The CaO/ Fe3O4 composites were characterized using XRD, BET surface area, SEM-EDS, and VSM. The functional groups of the composite before and after adsorption were analyzed using FTIR. The adsorption of Fe(II), Fe(III), and Mn(II) ions was carried out with the batch method to determine the effect of pH, contact time, and initial concentration of metal ions. The CaO/ Fe3O4 composite has magnetic properties, as indicated by the saturation magnetization value of 65.49 emu/g. The Langmuir and Freundlich isotherm models were used to describe the adsorption isotherm of the composite for Fe(II), Fe(III), and Mn(II) ions. Investigations were also conducted on adsorption kinetics, including pseudo-first-order and pseudo-second-order, as well as adsorption thermodynamics comprising free energy, enthalpy, and entropy. Pseudo-first-order and Langmuir isotherms are suitable to describe the adsorption of Fe(II), Fe(III), and Mn(II) ions with adsorption capacities of Fe(III) > Fe(II) > Mn(II). Moreover, the adsorption of all ions using the composite occurred spontaneously. The removal effectiveness for Fe and Mn ions from AMD using CaO/ Fe3O4 composite, reached 90.41 and 97.59%, respectively, in volume 100 mL AMD, composite mass 0.4 g, and a contact time of 60 minutes.
Źródło:
Journal of Ecological Engineering; 2022, 23, 11; 188--201
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technogenic Impact of Sulphide-Containing Wastes Produced by Ore Mining and Processing at the Ozernoe Deposit: Investigation and Forecast
Autorzy:
Pashkevich, M. A.
Petrova, T. A.
Powiązania:
https://bibliotekanauki.pl/articles/124645.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
dumps of sulphide-containing wastes
adverse impact
environmental hazard
acid mine drainage
express-method of acid indication
Opis:
The paper provides an assessment of the potential technogenic impact of sulphide-containing wastes produced by ore extraction and processing at the Ozernoe deposit, which is currently at the initial stage of mining. The analysed averaged samples of ore and wastes of mining and processing were obtained in the course of semi-industrial experimental preproduction. The results of monitoring studies in the area of sulphide-containing dumps formed at an exploring mine in the 1960s were used for assessing a potential hazard of the wastes. The origin of acid mine drainage is described. Advantages and shortcomings of tests assessing acid mine drainage are considered. The used express-method of acid indication allows to reliably determine the risk of acid mine drainage by the values of acidic and neutralising potentials formed by rocks. An estimation of acid mine drainage formation and heavy metal migration is carried out at dumps of the exploring mine. The forecast of environmental impact is given for the future wastes of mining and processing at the Ozernoe deposit.
Źródło:
Journal of Ecological Engineering; 2017, 18, 6; 127-133
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Treatment of Acid Mine Drainage in a Bioelectrochemical System, Based on an Anodic Microbial Sulfate Reduction
Autorzy:
Angelov, Anatoliy
Bratkova, Svetlana
Ivanov, Rosen
Velichkova, Polina
Powiązania:
https://bibliotekanauki.pl/articles/27323817.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
BES
bioelectrochemical system
MFC
microbial fuel cell
MEC
microbial electrolysis cell
ethanol stillage
microbial sulfate reduction
acid mine drainage
heavy metals
sulphate
Opis:
The possibilities of simultaneous removal of sulfates and heavy metals (Cu, Ni, Zn) from acid mine drainage have been investigated in two-section bioelectrochemical system (BES). The used BES is based on the microbial sulfate reduction (MSR) process in the anode zone and abiotic reduction processes in the cathodic zone. In the present study, the model acid mine drainage with high sulfate (around 4.5 g/l) and heavy metals (Cu2+, Ni2+ and Zn2+) content was performed. As a separator in the laboratory, BES used an anionic exchange membrane (AEM), and for electron donor in the process of microbial sulfate reduction in the bioanode zone – waste ethanol stillage from the distillery industry was employed. In this study, the possibility of sulfates removal from the cathodic zone was established by their forced migration through AEM to the anode zone. Simultaneously, as a result of the MSR process, the sulfate ions passed through AEM are reduced to H2S in the anode zone. The produced H2S, having its role as a mediator in electron transfer, is oxidized on the anode surface to S0 and other forms of sulfur. The applicability of waste ethanol stillage as a cheap and affordable organic substrate for the MSR process has also been established. Heavy metals (Cu2+, Ni2+ and Zn2+) occur in the cathode chamber of BES in different degrees of the removal. As a microbial fuel cell (MFC) operating for 120 hours, the reduction rate of Cu2+ reaches 94.6% (in waste ethanol stillage) and 98.6% (in the case of Postgate culture medium). On the other hand, in terms of Ni2+ and Zn2+, no significant decrease in their concentrations in the liquid phase is found. In the case of microbial electrolysis cell (MEC) mode reduction of Cu2+– 99.9%, Ni2+– 65.9% and Zn2+– 64.0% was achieved. For 96 hours, the removal of sulfates in MEC mode reached 69.9% in comparison with MFC mode – 35.2%.
Źródło:
Journal of Ecological Engineering; 2023, 24, 7; 175--186
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies