Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "first order" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Kinetic Modelling and Half Life Study of Adsorptive Bioremediation of Soil Artificially Contaminated With Bonny Light Crude Oil
Autorzy:
Agarry, S. E.
Oghenejoboh, K. M.
Solomon, B. O.
Powiązania:
https://bibliotekanauki.pl/articles/123870.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
activated carbon
biochar
biodegradation
crude oil
first-order kinetics
Opis:
In this study, comparative potential effects of commercial activated carbon (CAC) and plantain peel-derived biochar (PPBC) of different particle sizes and dosage to stimulate petroleum hydrocarbon biodegradation in soil were investigated. Microcosms containing soil were spiked with weathered Bonny light crude oil (WBLCO) (10% w/w) and amended with different particle sizes (0.02, 0.07 and 0.48 mm) and dosage (20, 30 and 40 g) of CAC and PPBC, respectively. The bioremediation experiments were carried out for a period of 28 days under laboratory conditions. The results showed that there was a positive relationship between the rate of petroleum hydrocarbons reduction and presence of the CAC and PPBC in crude oil contaminated soil microcosms. The WBLCO biodegradation data fitted well to the first-order kinetic model. The model revealed that WBLCO contaminated-soil microcosms amended with CAC and PPBC had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than unamended soil (natural attenuation) remediation system. The rate constants increased while half-life times decreased with decreased particle size and increased dosage of amendment agents. ANOVA statistical analysis revealed that WBLCO biodegradation in soil was significantly (p = 0.05) influenced by the addition of CAC and biochar amendment agents, respectively. However, Tukey’s post hoc test (at p = 0.05) showed that there was no significant difference in the bioremediation efficiency of CAC and PPBC. Thus, amendment of soils with biochar has the potential to be an inexpensive, efficient, environmentally friendly and relatively novel strategy to mitigate organic compound-contaminated soil.
Źródło:
Journal of Ecological Engineering; 2015, 16, 3; 1-13
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of the Energy Capacity of the Controlled Landfill from Mohamedia Benslimane by Three Theoretical Methods – Land Gem, IPCC, and TNO
Autorzy:
Oukili, Ahlam Idrissi
Chhiba, Mostafa
Powiązania:
https://bibliotekanauki.pl/articles/2202375.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
controlled landfill
municipal solid waste
biogas
first order decay model
electrical energy
Opis:
The objective of this study was to estimate the content of methane produced and generated by the anaerobic biodegradation of the main organic fraction of municipal solid waste from the controlled landfill of Mohammedia-Benslimane (Morocco) by three theoretical models, based on the first order decay equation: LandGEM, IPCC and TNO. To carry out this study, the quantities of solid waste buried in this landfill since its inauguration in 2012 were used and the composition of the biogas in-situ in 2020 and 2021was determined. The quantities of waste that will be buried in this landfill from 2022 to 2032 were estimated by projection.The results of the analysis of the biogas generated in this controlled landfill in 2020–2021 indicate that it is composed of 59.59% CH4, 38.9% CO2, and 0.14% O2. This result indicates that the waste is in a stable methanogenesis phase. The results obtained by using the three methodologies show that the total volume of CH4 generated during the period 2012–2021 was 32.59 Mm3 according to the IPCC model, 20.95 Mm3 according to the LandGEM model and 20.96 Mm3 according to the TNO model. The total volume of CH4 that will be produced during the period 2022–2032 has been projected to 107.48 Mm3 by the IPCC model, to 76.84 Mm3 by the LandGEM model, while the total volume of CH4 projected under the TNO method will be 67.67 Mm3. The maximum methane production will reach a value of 12.07 Mm3, 9.46 Mm3 and 7.82 Mm3 for the IPCC, LandGEM and TNO models, respectively. In 2021, the volume of methane estimated by the three models is higher than that on-site measurement by a factor of 3.5(IPCC), 2.4 (LandGEM) and 2.3 (TNO). The results clearly indicate that the three models over predict methane generations when compared to the on-site generations. According to the LandGEM methodology, the electricity estimated will reach a maximum value of 33 GWh/year in 2032.The efficient use of methane generated by this controlled landfill as a source of electrical energy in the upcoming years can be an option for the sustainable management of waste.
Źródło:
Journal of Ecological Engineering; 2023, 24, 2; 19--30
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents
Autorzy:
Agarry, S.
Latinwo, G. K.
Powiązania:
https://bibliotekanauki.pl/articles/125057.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
bioremediation
bioventing
biostimulation
bioaugmentation
brewery waste effluents
diesel oil
first-order kinetics
Opis:
The purpose of this study is to investigate and evaluate the effects of natural bioattenuation, bioventing, and brewery waste effluents amendment as biostimulation-bioaugmentation agent on biodegradation of diesel oil in unsaturated soil. A microcosm system was constructed consisting of five plastic buckets containing 1 kg of soil, artificially contaminated or spiked with 10% w/w of diesel oil. Biodegradation was monitored over 28 days by determining the total petroleum hydrocarbon content of the soil and total hydrocarbon degrading bacteria. The results showed that combination of brewery waste effluents amendment and bioventing technique was the most effective, reaching up to 91.5% of diesel removal from contaminated soil; with the brewery waste effluents amendment (biostimulation-bioaugmentation), the percentage of diesel oil removal was 78.7%; with bioventing, diesel oil percentage degradation was 61.7% and the natural bioattenuation technique resulted in diesel oil removal percentage be not higher than 40%. Also, the total hydrocarbon-degrading bacteria (THDB) count in all the treatments increased throughout the remediation period. The highest bacterial growth was observed for combined brewery waste effluents amendment with bioventing treatment strategy. A first-order kinetic model was fitted to the biodegradation data to evaluate the biodegradation rate and the corresponding half-life time was estimated. The model revealed that diesel oil contaminated-soil microcosms under combined brewery waste effluents amendment with bioventing treatment strategy had higher biodegradation rate constants, k as well as lower half-life times, t1/2 than other remediation systems. This study showed that the microbial consortium, organic solids, nitrogen and phosphorus present in the brewery waste effluents proved to be efficient as potential biostimulation-bioaugmentation agents for bioremediation processes of soils contaminated with diesel oil.
Źródło:
Journal of Ecological Engineering; 2015, 16, 2; 82-91
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies