Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "biogas plant" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Methods of Assessing Odour Emissions from Biogas Plants Processing Municipal Waste
Autorzy:
Wiśniewska, Marta
Powiązania:
https://bibliotekanauki.pl/articles/124246.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
biogas plant
municipal waste
odour emission
olfactometry
Opis:
Waste management is an important element of sustainable urban development. One of the directions of waste management is mechanical-biological treatment (MBT) of waste with biogas installation. In addition to the benefits of purifying waste from separate collection and sorting of raw material waste from the mixed waste stream (subsequently diverted to recovery or recycling), this direction is also characterised by energy benefits (energy production from biogas). Mechanical and biological treatment of municipal waste inevitably entails also negative impacts, such as odour emission. In Poland, there are no legal regulations concerning odour nuisances. Reference could be made, inter alia, to BAT conclusions on waste treatment or standards in other countries. There are many methods of testing for odour emissions, but none of them, taken individually, characterises it sufficiently. The paper presents the results of research carried out in one of the biogas plants in Poland. The results present the sources of the highest odour emission in the examined plant, to which they belong: digestate during oxygen stabilisation 2° in the open air and pump station of technological sludge.
Źródło:
Journal of Ecological Engineering; 2020, 21, 1; 140-147
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exchange of Carbon Dioxide between the Atmosphere and the Maize Field Fertilized with Digestate from Agricultural Biogas Plant
Autorzy:
Czubaszek, Robert
Powiązania:
https://bibliotekanauki.pl/articles/123768.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
carbon dioxide
agricultural biogas plant
digestate
Opis:
The aim of the research was to determine the exchange rate of carbon dioxide between the atmosphere and the maize field fertilized with the digestate from an agricultural biogas plant. The studies considered both the amount of net carbon dioxide emission which is the difference between the amount of this gas absorbed by vegetation and its amount emitted from the whole ecosystem of the field as well as the emission resulting only from the changes occurring in the soil. The CO2 emission from the entire field was measured by the eddy covariance method with a set of LI-7500A analyzer (LI-COR Biosciences, USA) for measuring the CO2/H2O concentration in air and 3-axis WindMaster ultrasonic anemometer (GILL, UK). The data from the analyzers were recorded at 10 Hz, while the CO2 streams were calculated using the EddyPro 5 software. The soil emission was determined with the chamber method using the automated ACE measurement system (ADC BioScientific, UK). Until the maize reached maturity, the study was carried out once a week, at 10.00 – 14.00. During each measurement day, the basic meteorological parameters were measured as well. The obtained results showed a clear relationship between the plants development phase and the size of the net CO2 exchange. The negative values of carbon dioxide streams, indicating the absorption of this gas from the atmosphere, were observed already in the case of plants with a height of approx. 25 cm, while the maximum values were reached after the release of panicles by maize. The carbon dioxide emission from soils, measured at the same time, was maintained throughout the entire research period at a similar low level, undergoing only slight fluctuations associated with variable soil moisture. The study showed that the maize field, almost throughout all growing season, can be treated as a sink of atmospheric carbon dioxide, reducing its emission from agriculture.
Źródło:
Journal of Ecological Engineering; 2019, 20, 1; 145-151
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Database System for Estimating the Biogas Potential of Cattle and Swine Feces in Poland
Autorzy:
Wawrzyniak, Agnieszka
Lewicki, Andrzej
Pochwatka, Patrycja
Sołowiej, Piotr
Czekała, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1839172.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
biogas plant
energetic optimization
substrate
manure
slurry
database
Opis:
Animal biomass is an important substrate in the anaerobic digestion process. The implementation of a waste technology for energy production, such as the production of biogas from animal waste, has been recognized in many countries as one of the best ways to achieve the Sustainable Energy Development Goals. Without a systematic review of resources and accurate estimation of available sources in terms of the amount of potential electricity, it is impossible to manage biomass rationally. The main aim of the article was to present a new tool for assessing the biomass of animal origin and estimating its potential energy through a computer database, which will be widely available in the end of 2020 to show results from the calculation using the database. This tool is configured to enter the data on the developed and undeveloped biomass resources in production of farm animals in rural areas in Poland. Calculations from the database show the biogas potential of swine and cattle manure and slurry in Poland, which is approximately 5.04 billion m3, with a 60% share of methane in biogas. It is the value of approximately 3.03 billion m3 of methane. It is worth underlining that slurry and manure are not high-energy substrates; therefore, it is necessary to introduce more energetic substrate streams to improve the biogas plant efficiency.
Źródło:
Journal of Ecological Engineering; 2021, 22, 3; 111-120
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate
Autorzy:
Kowalczyk-Juśko, Alina
Pochwatka, Patrycja
Mazurkiewicz, Jakub
Pulka, Jakub
Kępowicz, Barbara
Janczak, Damian
Dach, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/24201726.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
biogas plant
anaerobic digestion
digestate
fertilizing
emission reduction
Opis:
Digestate from a biogas plant can be a valuable organic and mineral fertilizer. Quantitative proportions of cosubstrates used in three agricultural biogas plants in Poland were analyzed. The composition of digestates was examined and large differences in the content of macronutrients were found, especially N and K. On the basis of the factors used to calculate emissions from the production and use of artificial fertilizers, the greenhouse gas (GHG) reduction resulting from replacing mineral fertilizers with digestate was calculated. In terms of 1 Mg of fresh digestate, this reduction may not seem large, as it amounts to 27.9–61.6 kg of CO2 eq, but it should be taken into account that digestate contains little dry matter. The annual amount of digestate used on an area of 1 ha allows avoiding GHG emissions of 25.8–44.5 Mg CO2 eq.
Źródło:
Journal of Ecological Engineering; 2023, 24, 4; 312--319
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Trends in Substrates and Biogas Systems in Poland
Autorzy:
Marks, Stanisław
Dach, Jacek
Fernandez Morales, Francisco Jesus
Mazurkiewicz, Jakub
Pochwatka, Patrycja
Gierz, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/124959.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
biogas plant
biowaste
agriculture
industry
biogas
methane
new trends
substrates
new technologies
Opis:
The amendment to the Polish Renewable Energy Act creates great opportunities for the development of the biogas market in Poland. Years of experience in biogas production in Western Europe and the development of biogas installations in Poland indicate the requirement to look for alternative substrates to those produced from dedicated crop production (mainly maize silage). Feasible solutions include the use of biodegradable waste from agriculture or industry as well as municipal landfill sites. The usage of these substrates in the methane fermentation process offers low cost, high biogas production and the safe management of biowaste. The arguments for using them in biogas installations are persuasive. This article presents new approaches of biogas plant installation solutions which allows for the effective fermentation of biowaste from animal and vegetable production, from the agro-food industry and from municipal waste.
Źródło:
Journal of Ecological Engineering; 2020, 21, 4; 19-25
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of the Biodiversity of Samples Used for Isolation of Microbial Strains Capable of Converting Straw Destined as a Substrate for Biogas Plant
Autorzy:
Cybulska, K.
Kołosowski, P.
Wrońska, I.
Dobek, T.
Powiązania:
https://bibliotekanauki.pl/articles/123579.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
straw
biological preteatment
isolation of microorganisms strains
biogas plant
enzymatic activity
Opis:
In biogas plants, almost any type of organic matter can be used as a substrate to produce biogas. To make the process of methane fermentation more effective, these materials are pretreated. This applies in particular to a group of difficult substrates. Straw, due to its hemicellulose structure and saturation, is hardly fermented by biogas reactor microorganisms. The methods of post-harvest residue preparation for anaerobic digestion being applied so far are expensive, while their application has a negative effect on methanoegenic bacteria. Therefore, the microorganisms being able to degrade straw hemicellulose structure, utilisation of which could precede the proper fermentation process, have been searched for. This paper presents the results of microbial biodiversity analysis in the environmental samples being lupin, cereal, rape and maize straw as well as hay and haylage at different degradation stages. The analysis of biodiversity will help at a further stage of study to isolate active microbial strains showing cellulolytic, hemicellulolytic or ligninolytic activity which are desirable in the process of straw biodegradation. Analysis of the microbial count was performed by the method of deep inoculation on different microbiological culture media. The conducted tests include determination of the number of fungi, bacteria and actinomycetes. The results obtained confirm the usefulness of the analysed samples for isolation of microbial strains capable of converting straw preceding the biogas production.
Źródło:
Journal of Ecological Engineering; 2016, 17, 1; 114-118
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pollution Indicator of a Megawatt Hour Produced in Cogeneration – the Efficiency of Biogas Purification Process as an Energy Source for Wastewater Treatment Plants
Autorzy:
Ciuła, Józef
Kowalski, Sławomir
Wiewiórska, Iwona
Powiązania:
https://bibliotekanauki.pl/articles/24201631.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
biogas purification
cogeneration
pollution indicator
renewable energy
sewage treatment plant
Opis:
The sewage treatment plant, as a producer of renewable energy, should make every effort to ensure that the biogas used as a fuel meets the quality requirements, including those of the manufacturers of cogeneration units. Such measures necessitate the application of a conditioning process of biogas in order to remove harmful compounds, so that its parameters ensure failure-free operation of engines. The aim of the research was to evaluate the effectiveness of biogas treatment in the A-type installation using the “wet biogas treatment” technology, and in the B-type installation, which is a comprehensive solution comprising sulfur removal as a result of a simultaneous regeneration of the bed with oxygen, removal of siloxanes on activated carbon, cooling and heating of biogas along with its filtration. The analysis of the results of biogas testing for these two installations demonstrated fundamental qualitative differences for the benefit of the installation B, in which the biogas was characterized by a much lower content, mainly of sulfur, hydrogen sulfide, siloxanes and humidity. The introduced pollution indicator of a megawatt hour produced in cogeneration one has confirmed much higher pollution load from the A-type installation. The hybrid solution applied in the work with simultaneous regeneration of the bed has confirmed the efficiency of biogas conditioning. Such a solution contributes to a safe and reliable operation of the cogeneration system for generating energy from a renewable source, which in turn contributes to the optimization of energy.
Źródło:
Journal of Ecological Engineering; 2023, 24, 3; 232--245
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies