Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Phragmites" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Heavy Metals Chelating Ability and Antioxidant Activity of Phragmites australis Stems Extracts
Autorzy:
Sellal, Abdelhakim
Belattar, Rima
Bouzidi, Abdelouahab
Powiązania:
https://bibliotekanauki.pl/articles/124953.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
chelation
Phragmites australis
common reed
DPPH
heavy metal
Opis:
In this study, the ability of hexane (HSE), chloroform (CSE), ethyl acetate (EASE) and methanolic (MSE) stems extracts from Phragmites australis or EDTA (as standard) to chelate iron using ferrozine method or zinc and copper using the murexide method is carried out in vitro. When the increased volumes of the HSE studied were taken from a stock solution of a fixed concentration 1 mg/ml at 25–175 μl for the iron and zinc chelating assay, 1–7 mg/ml for the copper chelating assay gave a significant (p≤ 0.01) activity. The obtained results showed that the HSE have the highest capacity to chelate ferrous ions below the EDTA (standard chelator) with absorbance arrive to the lesser extent 0.24±0.005, 0.04±0.013 which expresses 86% and 97% (compared to the control) of inhibition, respectively. For the murexide chelation, the results obtained also showed that the HSE and EDTA have a good (p≤ 0.01) chelating dose dependent effect towards zinc and copper ions with increased absorbance 0.45±0.02 and 0.42±0.02 with 54% and 56% of inhibition, respectively, for the zinc chelation and 0.66±0.03, 0.13±0.005 represent 44% and 88% for copper chelation. In contrast to the antioxidant capacity, the extract of hexane, ethyl acetate, chloroform and methanol from leaves, stems and roots of the Phragmites australis plant have a very low scavenger effect to the radical DPPH where the maximum inhibition is approximately 13.79%, obtained with the maximum volume. Finally, the HPLC analysis of effective extract (HSE) confirmed the presence of oxalic, citric, malic, succinic, fumaric, formic, acetic, propionic and butyric or iso butyric acid.
Źródło:
Journal of Ecological Engineering; 2019, 20, 2; 116-123
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on the Application of Floating Beds of Macrophites (Vetiveria zizanioides and Phragmites australis), in Pilot Scale, for the Removal of Heavy Metals from Água Forte Stream (Alentejo-Portugal)
Autorzy:
Borralho, Teresa
Gago, David
Almeida, Adelaide
Powiązania:
https://bibliotekanauki.pl/articles/123603.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
floating bed
heavy metals
Phragmites australis
Vetiveria zizanioides
Água Forte stream
Opis:
The surrounding area of the Roxo stream sub-basin (basin of the Sado River, Portugal) has completely sterile sections, jeopardizing the productivity of the agricultural activities practiced there. This may be due to the inflow of the Água Forte stream, which has characteristics of Acid Mining Drainage (AMD). The objective of this study was to test the efficiency of heavy metal removal from the Água Forte stream using the macrophyte floating bed technology (Vetiveria zizanioides and Phragmites australis) in a pilot plant, monitoring and evaluating the water quality and performance of macrophytes. Two experiments were carried out in 2019 over 6 months (January to June). Both experiments were performed in polyvinyl chloride (PVC) tanks with the nominal capacity of 1 m3 each. The tanks were filled with about 0.8 m3 of water coming from the Água Forte stream, which was renewed monthly. The floating beds consisted in a high-density polyethylene floating system and an organic plant support mat filled with a plant density of 285 plants m-2. The heavy metal removal rates obtained from the Vetiveria zizanioides and Phragmites australis floating bed were Fe = 40%; Zn = 33%; Cu = 23%; Mn = 14% and Fe = 27%; Zn = 19%; Mn = 17%; Cu = 14%; respectively. The order of heavy metals accumulation in Vetiveria zizanioides and Phragmites australis in plant biomass was Fe > Zn > Cu > Mn and Fe > Zn > Mn > Cu, respectively. The growth of Vetiveria zizanioides and Phragmites australis in leaf biomass was 7.1 ± 0.3 cm/month and 2.5 ± 0.0 cm/month and in root biomass 3.8 ± 0.1 cm/month and 4.1 ± 0.1 cm/month, respectively. The growth of macrophytes showed the ability to survive in the AMD-containing waters without severe damage in their external and anatomical morphology, although their growth suffered inhibition. The results suggest that the floating bed technology may be an environmentally sustainable alternative, allowing long-term heavy metal removal.
Źródło:
Journal of Ecological Engineering; 2020, 21, 3; 153-163
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Ability of Leaves and Rhizomes of Aquatic Plants to Accumulate Macro- and Micronutrients
Autorzy:
Parzych, A. E.
Cymer, M.
Jonczak, J.
Szymczyk, S.
Powiązania:
https://bibliotekanauki.pl/articles/123566.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
bottom sediments
Glyceria maxima
Phragmites australis
Phalaris arundinacea
Typha latifolia
accumulation of nutrients
Opis:
The samples of macrophytes and bottom sediments originated from the littoral zone of the Słupia River were collected in summer 2013. The aim of this study was to compare the properties of the accumulation of leaves and rhizomes of Glyceria maxima, Phragmites australis, Typha latifolia and Phalaris arundinacea for macro- and micronutrients. The largest quantities of macroelements were found in the leaves of the examined species, and microelements dominated the rhizomes of most examined macrophytes except for Mn in P.australis and T.latifolia. The obtained results show that N and K dominated in the leaves of P.arundinacea, P and Mg in the leaves of P.australis, and Ca in the leaves of G.maxima. The largest quantities of N, P and K were cumulated in the rhizomes of P.arundinacea, while Mg and Ca in the rhizome of T.latifolia. The leaves of aquatic plants accumulated from 1354.9 mmolc·kg-1 (T.latifolia) to 1844.0 mmolc·kg-1 (P.arundinacea), and rhizomes from 985.8 mmolc·kg-1 (G.maxima) to 1335.2 mmolc·kg-1 (P.arundinacea) of all the analyzed components. In these species of macrophytes lower accumulated value of the sum of macro- and microelements were found in the rhizomes. The share of nitrogen was 42.4–59.8% of this amount, phosphorus 4.3–8.6%, potassium 22.8–35.1%, calcium from 2,6% to 12.4%, magnesium 3.0–7.5%, and heavy metals were from 0.6% (G.maxima) to 1.2% (T.latifolia) in leaves and from 2.2% (T.latifolia) to 8.7% (G.maxima) in rhizomes.
Źródło:
Journal of Ecological Engineering; 2015, 16, 3; 198-205
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies