Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hashim" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Evaluation of Rainfall-Runoff Erosivity Factor for Cameron Highlands, Pahang, Malaysia
Autorzy:
Abdulkadir, T. S.
Mustafa, M. R.
Yusof, K. W.
Hashim, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/123050.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
rainfall
erosivity factor
soil erosion
USLE/RUSLE
runoff
Opis:
Rainfall-runoff is the active agent of soil erosion which often resulted in land degradation and water quality deterioration. Its aggressiveness to induce erosion is usually termed as rainfall erosivity index or factor (R). R-factor is one of the factors to be parameterized in the evaluation of soil loss using the Universal Soil Loss Equation and its reversed versions (USLE/RUSLE). The computation of accurate R-factor for a particular watershed requires high temporal resolution rainfall (pluviograph) data with less than 30-minutes intensities for at least 20 yrs, which is available only in a few regions of the world. As a result, various simplified models have been proposed by researchers to evaluate R-factor using readily available daily, monthly or annual precipitation data. This study is thus aimed at estimating R-factor and to establish an approximate relationship between R-factor and rainfall for subsequent usage in the estimation of soil loss in Cameron highlands watershed. The results of the analysis showed that the least and peak (critical) R-factors occurred in the months of January and April with 660.82 and 2399.18 MJ mm ha-1 h-1year-1 respectively. Also, it was observed that erosivity power starts to increase from the month of January through April before started falling in the month of July. The monthly and annual peaks (critical periods) may be attributed to increased rainfall amount due to climate change which in turn resulted to increased aggressiveness of rains to cause erosion in the study area. The correlation coefficient of 0.985 showed that there was a strong relationship rainfall and R-factor.
Źródło:
Journal of Ecological Engineering; 2016, 17, 3; 1-8
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Land-use Assessment and its Influence on Spatial Distribution of Rainfall Erosivity: Case Study of Cameron Highlands Malaysia
Autorzy:
Ul Mustafa, Muhammad Raza
Sholagberu, Abdulkadir Taofeeq
Syazwan, Muhammad Asyraf
Yusof, Khamaruzaman Wan
Hashim, Ahmad Mustafa
Abdurrasheed, Abdurrasheed S.
Powiązania:
https://bibliotekanauki.pl/articles/124485.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
land-use
land cover
erosivity
Cameron Highlands
GIS
Opis:
Over the years, Cameron Highlands have witnessed extensive land-use and land-cover (LULC) changes due to the massive agricultural and urbanization activities. This significantly contributed to the erosion problems in the area. Rainfall erosivity that measures the aggressiveness of raindrop in triggering soil erosion is one of its major components that could be influenced by the LULC changes in watersheds. However, the research relating to the LULC changes with the erosivity especially in the complex landscape is scarce. Hence, this study applies geographic information system (GIS) and remote sensing techniques to assess the LULC changes and their influence on the rainfall erosivity distribution in mountainous watershed of Cameron Highlands. Four Landsat images and the rainfall data from the period of thirty years were analysed for the development of LULC and erosivity maps respectively in ArcGIS environment. The study showed that the study area experienced immense land-use changes especially in agriculture and urbanization which affected the erosivity distribution. The LULC change for agriculture increased linearly in the last 30 years from 7.9% in 1986 to almost 16.4% in 2016. The results showed that urban development increased from 5.1% in 1986 to 11.4% in 2016. The increasing urbanization trend was targeted to meet up with tourism requirement in Cameron Highlands. However, forest class declined tremendously due to the exploration of land for agriculture practice and other various types of development. Watershed managers and other stakeholders should find this study beneficial in tackling erosion and its associated ecological challenges.
Źródło:
Journal of Ecological Engineering; 2019, 20, 2; 183-190
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies