Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zr" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Effect of Solution Treatment on Age-Hardening Behavior of Al-12Si-1Mg-1Cu Piston Alloy with Trace-Zr Addition
Autorzy:
Kaiser, M. S.
Powiązania:
https://bibliotekanauki.pl/articles/106951.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Al-Si alloys
trace addition
solutionizing
age hardening, resistivity
Opis:
The influence of a solution treatment with a trace zirconium addition on the precipitation behavior of a cast Al-12%Si-1%Mg1%Cu piston alloy has been reported. The alloys were prepared by controlled melting and casting. The cast alloys were given an age-hardening treatment having a sequence of homogenization, T6 solutionizing, quenching, and aging. Both the cast and solutionized samples were naturally aged for 58 days, isochronally aged for 60 minutes at different temperatures (up to 350°C), and isothermally aged at various temperatures (up to 225°C) for different periods of time (ranging from 15 to 360 minutes). The hardness values of the differently processed alloys were measured to understand the aging behavior of the alloys. Electrical resistivity changes with aging time and temperature were measured to understand the precipitation behavior of the alloys. It is observed that significant hardening takes place in the aged alloys due to the formation of GP zones as well as the formation of metastable phases. The solutionizing treatment improves the hardness because some alloying elements are re-dissolved during solution treatment to produce a solute-rich solid solution. The trace-added Zr hinders the softening due to the precipitation of Al3Zr, which is very stable against coarsening and the re-dissolution of precipitates. Electrical resistivity decreases due to stress relieving, the dissolution of the metastable phase, and precipitation coarsening. The resistivity of the solutionized alloys decreases more due to the higher concentration of elements in the solid solution. A microstructural study of the alloys reveals that the solution treatment improves the distribution of the silicon grains. It is also observed that the alloys attained an almost fully re-crystallized state after aging at 350°C for 90 minutes.
Źródło:
Journal of Casting & Materials Engineering; 2018, 2, 2; 30-37
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of Fluoride Ions in Artificial Saliva Solution to Corrosion Behavior of Ti-6Al-4V and Ti-10Mo-4Zr Titanium Alloys
Autorzy:
Loch, J.
Krawiec, H.
Powiązania:
https://bibliotekanauki.pl/articles/106985.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
titanium alloys
artificial saliva solution
fluoride ions
corrosion
Opis:
Titanium alloys used in medical applications (especially dentistry) are exposed to the actions of various compounds that appear periodically in the mouth. Fluorine compounds are dangerous for the surface of titanium alloys, because they generate a dissolution of the passive layer. In this way, they destroy the surface of dental implants and cause the absorption of metal ions into the human body. The presented work was aimed to describe the effect of fluoride ions on the corrosive behavior of the commercial Ti-6Al-4V and new Ti-10Mo-4Zr alloys that can be used in stomatology. Electrochemical measurements such as open circuit potential (OCP), linear sweet voltamperometry (LSV) and impedance spectroscopy (EIS) were performed to get information on the corrosive behavior of titanium in artificial saliva solutions (MAS) with different concentrations of NaF. It has been revealed that a high concentration of fluoride ions enhance the current density in the anodic domain, especially for the Ti-10Mo-4Zr alloy. EIS measurements performed at a potential of 0.5 V vs. AgCl (3 M KCl) show that the Ti-10Mo-4Zr alloy has a typical two-layer structure of its passive film. This passive film consists of the outer and inner layers, respectively. The resistance of the outer layer is significantly lower than the resistance of the inner layer.
Źródło:
Journal of Casting & Materials Engineering; 2018, 2, 3; 57-62
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies