Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "noise control" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Inversion of fuzzy neural networks for the reduction of noise in the control loop for automotive applications
Autorzy:
Nentwig, M.
Mercorelli, P.
Powiązania:
https://bibliotekanauki.pl/articles/384669.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
neural networks
fuzzy control
inversion of neural networks
automotive control
noise reduction
Opis:
A robust throttle valve control has been an attractive problem since throttle by wire systems were established in the mid-nineties. Control strategies often use a feed-forward controller which use an inverse model; however, mathematical model inversions imply a high order of differentiation of the state variables resulting in noise effects. In general, neural networks are a very effective and popular tool for modelling. The inversion of a neural network makes it possible to use these networks in control problem schemes. This paper presents a control strategy based upon an inversion of a feed-forward trained local linear model tree. The local linear model tree is realized through a fuzzy neural network. Simulated results from real data measurements are presented, and two control loops are explicitly compared.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2009, 3, 3; 83-89
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Self-supervised learning of motion-induced acoustic noise awareness in social robots
Autorzy:
Andrade, João
Pedro, Santana
Almeida, Alexandre P.
Powiązania:
https://bibliotekanauki.pl/articles/950803.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
social robot
acoustic noise
motion control
self-supervised learning
robot społeczny
hałas akustyczny
kontrola ruchu
Opis:
With the growing presence of robots in human populated environments, it becomes necessary to render their presence natural, rather than invasive. To do that, robots need to make sure the acoustic noise induced by their motion does not disturb people nearby. In this line, this paper proposes a method that allows the robot to learn how to control the amount of noise it produces, taking into account the environmental context and the robot’s mechanical characteristics. Concretely, the robot adapts its motion to a speed that allows it to produce less noise than the environment’s background noise and, hence, avoiding to disturb nearby humans. For that, before executing any given task in the environment, the robot learns how much acoustic noise it produces at different speeds in that environment by gathering acoustic informatinon through a microphone. The proposed method was successfully validated on various environments with various background noises. In addition, a PIR sensor was installed on the robot in order to test the robot’s ability to trigger the noise-aware speed control procedure when a person enters the sensor’s field of view. The use of a such a simple sensor aims at demonstrating the ability of the proposed system to be deployed in minimalistic robots, such as micro unmanned aerial vehicles.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 1; 3-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies