Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Nowak, Aleksander." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Combined YOLOv5 and HRNet for high accuracy 2D keypoint and human pose estimation
Autorzy:
Nguyen, Hung-Cuong
Nguyen, Thi-Hao
Nowak, Jakub
Byrski, Aleksander
Siwocha, Agnieszka
Le, Van-Hung
Powiązania:
https://bibliotekanauki.pl/articles/2147147.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
YOLOv5
HRNet
2D key points estimation
2D human pose estimation
Opis:
Two-dimensional human pose estimation has been widely applied in real-world applications such as sports analysis, medical fall detection, human-robot interaction, with many positive results obtained utilizing Convolutional Neural Networks (CNNs). Li et al. at CVPR 2020 proposed a study in which they achieved high accuracy in estimating 2D keypoints estimation/2D human pose estimation. However, the study performed estimation only on the cropped human image data. In this research, we propose a method for automatically detecting and estimating human poses in photos using a combination of YOLOv5 + CC (Contextual Constraints) and HRNet. Our approach inherits the speed of the YOLOv5 for detecting humans and the efficiency of the HRNet for estimating 2D keypoints/2D human pose on the images. We also performed human marking on the images by bounding boxes of the Human 3.6M dataset (Protocol #1) for human detection evaluation. Our approach obtained high detection results in the image and the processing time is 55 FPS on the Human 3.6M dataset (Protocol #1). The mean error distance is 5.14 pixels on the full size of the image (1000×1002). In particular, the average results of 2D human pose estimation/2D keypoints estimation are 94.8% of PCK and 99.2% of PDJ@0.4 (head joint). The results are available.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 4; 281--298
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies