Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "attack detection" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Deep features extraction for robust fingerprint spoofing attack detection
Autorzy:
Souza de, Gustavo Botelho
Silva Santos da, Daniel Felipe
Gonçalves Pires, Rafael
Nilceu Marana, Aparecido
Paulo Papa, Joao
Powiązania:
https://bibliotekanauki.pl/articles/91725.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
restricted Boltzmann Machines
Deep Boltzmann Machines
deep learning
fingerprint spoofing detection
biometrics
Opis:
Biometric systems have been widely considered as a synonym of security. However, in recent years, malicious people are violating them by presenting forged traits, such as gelatin fingers, to fool their capture sensors (spoofing attacks). To detect such frauds, methods based on traditional image descriptors have been developed, aiming liveness detection from the input data. However, due to their handcrafted approaches, most of them present low accuracy rates in challenging scenarios. In this work, we propose a novel method for fingerprint spoofing detection using the Deep Boltzmann Machines (DBM) for extraction of high-level features from the images. Such deep features are very discriminative, thus making complicated the task of forgery by attackers. Experiments show that the proposed method outperforms other state-of-the-art techniques, presenting high accuracy regarding attack detection
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 1; 41-49
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast attack detection method for imbalanced data in industrial cyber-physical systems
Autorzy:
Huang, Meng
Li, Tao
Li, Beibei
Zhang, Nian
Huang, Hanyuan
Powiązania:
https://bibliotekanauki.pl/articles/23944834.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intrusion detection system
industrial cyber-physical Systems
imbalanced data
all k-nearest neighbor
LightGBM
Opis:
Integrating industrial cyber-physical systems (ICPSs) with modern information technologies (5G, artificial intelligence, and big data analytics) has led to the development of industrial intelligence. Still, it has increased the vulnerability of such systems regarding cybersecurity. Traditional network intrusion detection methods for ICPSs are limited in identifying minority attack categories and suffer from high time complexity. To address these issues, this paper proposes a network intrusion detection scheme, which includes an information-theoretic hybrid feature selection method to reduce data dimensionality and the ALLKNN-LightGBM intrusion detection framework. Experimental results on three industrial datasets demonstrate that the proposed method outperforms four mainstream machine learning methods and other advanced intrusion detection techniques regarding accuracy, F-score, and run time complexity.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 4; 229--245
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies