Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "boundary conditions method" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Ritz method for large deflection of orthotropic thin plates with mixed boundary conditions
Autorzy:
Al-Shugaa, Madyan A.
Al-Gahtani, Husain J.
Musa, Abubakr E.S.
Powiązania:
https://bibliotekanauki.pl/articles/1839813.pdf
Data publikacji:
2020
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
Ritz method
energy method
orthotropic plate bending
mixed boundary conditions
free edges
large deflection
metoda Ritza
metoda energetyczna
duże ugięcie
mieszane warunki brzegowe
gięcie blach
gięcie blach ortotropowe
Opis:
In this paper, the Ritz method is developed for the analysis of thin rectangular orthotropic plates undergoing large deflection. The trial functions approximating the plate lateral and in-plane displacements are represented by simple polynomials. The nonlinear algebraic equations resulting from the application of the concept of minimum potential energy of the orthotropic plate are cast in a matrix form. The developed matrix form equations are then implemented in a Mathematica code that allows for the automation of the solution for an arbitrary number of the trial polynomials. The developed code is tested through several numerical examples involving rectangular plates with different aspect ratios and boundary conditions. The results of all examples demonstrate the efficiency and accuracy of the proposed method.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2020, 19, 2; 5--16
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diffusion equation including a local fractional derivative and weighted inner product
Autorzy:
Cetinkaya, Suleyman
Demir, Ali
Powiązania:
https://bibliotekanauki.pl/articles/2175506.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
local fractional derivative
Dirichlet boundary conditions
spectral method
separation of variables
weighted inner product
lokalna pochodna ułamkowa
warunek brzegowy Dirichleta
metoda spektralna
separacja zmiennych
Opis:
In this research, we discuss the construction of the analytic solution of the homogenous initial boundary value problem including partial differential equations of fractional order. Since the homogenous initial boundary value problem involves a local fractional order derivative, it has classical initial and boundary conditions. By means of separation of the variables method and the inner product defined on L2 [0, l], the solution is constructed in the form of a Fourier series including the exponential function. The illustrative examples present the applicability and influence of the separation of variables method on time fractional diffusion problems. Moreover, as the fractional order α tends to 1, the solution of the fractional diffusion problem tends to the solution of the diffusion problem which proves the accuracy of the solution.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 1; 19--27
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solution of hybrid time fractional diffusion problem via weighted inner product
Autorzy:
Cetinkaya, Suleyman
Demir, Ali
Powiązania:
https://bibliotekanauki.pl/articles/1839846.pdf
Data publikacji:
2021
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
hybrid fractional derivative
bivariate Mittag-Leffler function
Dirichlet boundary conditions
spectral method
weighted inner product
metoda spektralna
pochodna ułamkowa
funkcja Mittag-Lefflera
warunek brzegowy Dirichleta
Opis:
In this research, we discuss the construction of the analytic solution of homogenous initial boundary value problem including partial differential equations of fractional order. Since the homogenous initial boundary value problem involves the Hybrid fractional order derivative with various coefficients functions, it has classical initial and boundary conditions. By means of separation of the variables method and the inner product defined on L 2 [0,l], the solution is constructed in the form of a Fourier series including the bivariate Mittag-Leffler function. An illustrative example presents the applicability and influence of the separation of variables method on time fractional diffusion problems. Moreover, as the fractional order α tends to 1, the solution of the fractional diffusion problem tends to the solution of the diffusion problem which proves the accuracy of the solution.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2021, 20, 1; 17-27
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On one-dimensional diffusion processes with moving membranes
Autorzy:
Kopytko, Bohdan
Shevchuk, Roman
Powiązania:
https://bibliotekanauki.pl/articles/2202027.pdf
Data publikacji:
2022
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
diffusion processes with membrane
two-parapeter Feller semigroup
nonlocal boundary conditions
method of potential theory
procesy dyfuzyjne z membraną
dwuparapetowa półgrupa Fellera
nielokalny warunek brzegowy
metoda teorii potencjału
Opis:
Using the method of the classical potential theory, we construct the two-parameter Feller semigroup associated, on the given interval of the real line, with the Markov proces such that it is a result of pasting together, at some point of the interval, two ordinary diffusion processes given in sub-domains of this interval. It is assumed that the position on the line of boundary points of these sub-domains depends on the time variable. In addition, some variants of the general nonlocal boundary condition of Feller-Wentzell’s type are given in these points. The resulting process can serve as a one-dimensional mathematical model of the physical phenomenon of diffusion in media with moving membranes.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2022, 21, 3; 45--57
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies