Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analiza elementów skończonych" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Numerical study of ultimate bearing capacity of rectangular footing on layered sand
Autorzy:
Panwar, V.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/952456.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rectangular footing
finite element analysis
bearing capacity
layered sandstone
analiza elementów skończonych
nośność podłoża
Opis:
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the rectangular footing resting over layered sand using finite element method. Design/methodology/approach: Finite element analysis was used to investigate the dimensionless ultimate bearing capacity of the rectangular footing resting on a limited thickness of upper dense sand layer overlying limitless thickness of lower loose sand layer. The friction angle of the upper dense sand layer was varied from 41° to 46° whereas for the lower loose sand layer it was varied from 31° to 36°. Findings: The results reveal that the dimensionless ultimate bearing capacity was found to increase up to an H/W ratio of about 1.75 beyond which the increase was marginal. The results further reveal that the dimensionless ultimate bearing capacity was the maximum for the upper dense and lower loose sand friction angles of 46° and 36°, while it was the lowest for the upper dense and lower loose sands corresponding to the friction angle of 41° and 31°. For H/W = 0.5 and 2, the dimensionless bearing capacity decreases with the increase in the L/W ratio from 0.5 to 6 beyond which the dimensionless ultimate bearing capacity remains constant for all combinations of parameters. The results were presented in nondimensional manner and compared with the previous studies available in literature. Research limitations/implications: The analysis is performed using a ABAQUS 2017 software. The limitation of this study is that only finite element analysis is performed without conducting any experiments in the laboratory. Further the study is conducted only for the vertical loading. Practical implications: This proposed numerical study can be used to predict the ultimate bearing capacity of the rectangular footing resting on layered sand. Originality/value: The present study gives idea about the ultimate bearing capacity of rectangular footing when placed on layered sand (dense sand over loose sand) as well as the effect of thickness of top dense sand layer on the ultimate bearing capacity. The findings could be used to calculate the ultimate bearing capacity of the rectangular footing on layered sand.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 101, 1; 15-26
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FEA of displacements and stresses of aortic heart valve leaflets during the opening phase
Autorzy:
Bialas, O.
Żmudzki, J.
Powiązania:
https://bibliotekanauki.pl/articles/368153.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
heart valve
aortic valve
leaflet material
FEA
simulation
zastawka serca
zastawka aortalna
analiza elementów skończonych
symulacja komputerowa
Opis:
Purpose: Modelling of biomechanical behaviour of heart valve materials aids improvement of biofunctional feature. The aim of the work was assessment of influence of material thickness of leaflets of artificial aortic valve on displacements and stresses during opening phase using finite element analysis (FEA). Design/methodology/approach: The model of aortic valve was developed on the basis of average anatomical valve shapes and dimensions. Nonlinear dynamic large displacements analysis with assumption of isotropic linear elastic material behaviour was used in simulation (Solidworks). The modulus of elasticity of 5.0 MPa was assumed and Poisson ratio set to 0.45. The rigidly supported leaflets was loaded by pressure increasing in the range 0-55 mmHg in time 0.1 s. Leaflets with material thickness 0.13 and 0.15 and 0.17 mm were analysed. The thickness was simulated with shell finite elements. Findings: The highest stresses were observed in the areas of fixation of the leaflets near the scaffold and were lower than dangerous value of fatigue of polyurethanes. Increasing the thickness of valve leaflet material in the range of 40 micrometres resulted in reduction of the valve outlet by almost 10 percent. Research limitations/implications: The FEA was limited to the isotropic linear-elastic behaviour of the material albeit can be used to assess leaflet deformation during dynamic load. Practical implications: Leaflets design may be start from efficient FEA which helps estimation of material impact on stress and fold formation which can affect local blood flow. Originality/value: Aortic heart valve leaflet material can be initially tested in dynamic conditions during opening phase with using FEA.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 92, 1-2; 29-35
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Distribution of forces on supporting teeth in the midpalatal expander during “Hyrax” screw pre-load
Autorzy:
Młynarek, K.
Żmudzki, J.
Powiązania:
https://bibliotekanauki.pl/articles/366987.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rapid palatal expansion
Hyrax screw pre-load
stress
displacement
finite elements analysis
FEA
szybka ekspansja podniebienia
naprężenie
przemieszczenie
analiza elementów skończonych
Opis:
Purpose: The aim of the study was to determine forces which are transferred to supporting teeth during the treatment with the midpalatal device with Hyrax screw and to evaluate orthodontic and orthopaedic effects based on displacement analysis. Design/methodology/approach: The finite element method (FEM) was used to simulation the midpalatal expansion forces activated by the screw pre-loaded during a turn of 180° which corresponds to daily recommended value. Distribution of expansion forces of Hyrax device was calculated as reaction forces on elastic supports with stiffness corresponding to the teeth working on periodontal ligament in alveolar bone. Findings: On the basis of the displacement analysis was observed the movement of supporting teeth by a value higher than 0.1 mm which corresponds to the recommended daily value. The midpalatal suture splitting forces were determined on the first premolars with a value of 32.8 N and on the first premolars of 44.2 N. Research limitations/implications: The studies did not take into account the shape of palate other craniofacial bones and their stiffness. Practical implications: Adjusting the stiffness of the device to degree of ossification midpalatal suture and teeth mobility. Searching for new solutions which eliminate the negative phenomenon of tilting teeth during the expansion of maxilla and recommending a surgically assisted techniques. Originality/value: The simulation confirmed that treatment with Hyrax screw gives a uniform expansion with values of forces corresponded to stiffness of premolar and molar teeth. The studies have indicated a possibility of tendency to tilting the supporting teeth what is a negative phenomenon.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 93, 1-2; 26-31
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FEM numerical simulation of contact stresses between driving shaft and hub impeller of fuel pump
Autorzy:
Wiater, M.
Chladek, G.
Żmudzki, J.
Powiązania:
https://bibliotekanauki.pl/articles/2201038.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
fibre reinforcement composite
fuel pump
impeller
shaft
hub wear
contact stress
finite elements analysis
FEA
kompozyty wzmocnione włóknami
pompa paliwa
wirnik
wał
zużycie piasty
naprężenia kontaktowe
analiza elementów skończonych
Opis:
Purpose: The aim of the work was to test the contact stresses in the model system of the turbine hub cooperating with the fuel pump drive shaft. The hypothesis of the work was that, by means of FEA, it is possible to assess the contact stresses in the materials of the turbine hub and the fuel pump shaft during torque transmission. Design/methodology/approach: A turbine with fibre-reinforced polyphenylene sulphide (PPS) composite cooperating with a stainless steel shaft (X46Cr13/1.4034) in a commonly used D-flat shape joint was selected for the experimental research. To assess contact stresses, the CAD model (NX, Siemens) of the entire turbine was limited to the hub area. The drive shaft is supported in accordance with the bearing in the fuel pump, and the possibility of rotation about the axis along the length of the torque-producing magnet is taken away. The system was loaded with a torque of 200 Nmm on the turbine. The turbine hub and shaft were calculated, taking into account the phenomenon of contact detachment or slip at the value of the friction coefficient of 0.1. Findings: The pressure transmission area was found in the area at the edge of the flat surface D-flat and on the opposite side of the D-convexity. The contact stresses on the D-flat side reached values close to the composite strength. Research limitations/implications: The studies did not take into account the technological inaccuracies, thermal deformation, local material properties, and wear. The value of the friction coefficient was not measured in realistic conditions with fuel lubrication. Practical implications: FEA has been achieved, which allows to reduce the cost of experimental research. Originality/value: The proposed model allows for further studies of the influence of elasticity of various materials and structures on contact stresses in order to assess wear resistance.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 113, 1; 13--21
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of E-shaped footing on layered sand
Autorzy:
Nazeer, S.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818792.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
square footing
E-shaped footing
finite element analysis
bearing capacity
layered sandstone
thickness of upper layer
friction angle
stopa fundamentowa
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
grubość warstwy wierzchniej
kąt tarcia
Opis:
Purpose: The purpose of this study is to estimate the ultimate bearing capacity of the E-shaped footing resting on two layered sand using finite element method. The solution was implemented using ABACUS software. Design/methodology/approach: The numerical study of the ultimate bearing capacity of the E-shaped footing resting on layered sand and subjected to vertical load was carried out using finite element analysis. The layered sand was having an upper layer of loose sand of thickness H and lower layer was considered as dense sand of infinite depth. The various parameters varied were the friction angle of the upper (30° to 34°) and lower (42° to 46°) layer of sand as well as the thickness (0.5B, 2B and 4B) of the upper sand layer. Findings: The results reveal that the dimensionless ultimate bearing capacity was found to decrease with the increased in the H/B ratio for all combinations of parameters. The dimensionless ultimate bearing capacity was maximum for the upper loose sand friction angle of 34° and lower dense sand friction angle of 46°. The results further reveal that the dimensionless bearing capacity of the E-shaped footing was higher in comparison to the dimensionless bearing capacity of the square footing on layered sand (loose over dense). The improvement in the ultimate bearing capacity for the E-shaped footing was observed in the range of 109.35% to 152.24%, 0.44% to 7.63% and 0.63% to 18.97% corresponding to H/B ratio of 0.5, 2 and 4 respectively. The lowest percentage improvement in the dimensionless bearing capacity for the E-shaped footing on layered sand was 0.44 % at a H/B = 2 whereas the highest improvement was 152.24 % at a H/B = 0.5. Change of footing shape from square to E-shaped, the failure mechanism changes from general shear to local shear failure. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on E-shaped footing made out of a square footing of size 1.5 m x 1.5 m. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size E-shaped footing. Practical implications: The proposed numerical study can be useful for the architects designing similar types of super structures requiring similar shaped footings. Originality/value: No numerical study on E-shaped footing resting on layered sand (loose over dense) were conducted so far. Hence, an attempt was made in this article to estimate the bearing capacity of these footings.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 105, 2; 49--60
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of embedded and skirted E-shaped footing on layered sand
Autorzy:
Nazeer, S.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/2055759.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
skirted and embedded E-shaped footing
E-shaped footing
finite element analysis
bearing capacity
layered sandstone
skirt depth
embedment depth
thickness of upper layer
friction angle
stopa fundamentowa
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
grubość warstwy wierzchniej
kąt tarcia
Opis:
Purpose: The purpose of this study is to investigate the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on two layered sand using finite element method. The analysis was carried out by using ABACUS software. Design/methodology/approach: The numerical study of the ultimate bearing capacity of the embedded and skirted E-shaped footing resting on layered sand and subjected to vertical load was carried out using finite element analysis. The layered sand was having an upper layer of loose sand of thickness H and lower layer was considered as dense sand of infinite depth. The various parameters varied were the friction angle of the upper (30° to 34°) and lower (42° to 46°) layer of sand, the skirt depth (0B, 0.25B, 0.5B and 1B), the embedment depth (0B, 0.25B, 0.5B and 1B) and the thickness (0.5B, 2B and 4B) of the upper sand layer, where B is the width of the square footing. Findings: The ultimate bearing capacity was higher for the skirted E-shaped footing followed by embedded E-shaped footing and unskirted E-shaped footing in this order for all combinations of variables studied. The improvement in the ultimate bearing capacity for the skirted E-shaped footing in comparison to the embedded E-shaped footing was in the range of 0.31 % to 61.13 %, 30.5 % to 146.31 % and 73.26 % to 282.38% corresponding to H/B ratios of 0.5, 2.0 and 4.0 respectively. The highest increase (283.38 %) was observed at φ1 =30° and φ2 =46° corresponding to H/B and Ds/B ratio of 4.0 and 1.0 respectively while the increase was lowest (0.31 %) at φ1 =34° and φ2 =46° at H/B ratio of 0.5 and Ds/B ratio of 0.5. For the skirted E-shaped footing, the lateral spread was more as in comparison to the embedded E-shaped footing. The bearing capacity of the skirted footing was equal the sum of bearing capacity of the surface footing, the skin resistance developed around the skirt surfaces and tip resistance of the skirt with coefficient of determination as 0.8739. The highest displacement was found below the unskirted and embedded E-shaped footing, and at the skirt tip in the case of the skirted E-shaped footing. Further, the displacement contours generated supports the observations of the multi-edge embedded and skirted footings regarding the ultimate bearing capacity on layered sands. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on E shaped footing made from a square footing of size 1.5 m x 1.5 m. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size E shaped footing. Practical implications: The proposed numerical study can be an advantage for the architects designing similar types of super structures requiring similar shaped footings. Originality/value: No numerical study on embedded and skirted E shaped footing resting on layered sand (loose over dense) were conducted so far. Hence, an attempt was made in this article to estimate the bearing capacity of the same footings.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 108, 1; 5--23
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bearing capacity of rectangular footing on layered sand under inclined loading
Autorzy:
Panwar, V.
Dutta, R. K.
Powiązania:
https://bibliotekanauki.pl/articles/2055743.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
rectangular footing
inclined load
finite element analysis
bearing capacity
layered sand
thickness ratio
friction angle
friction angle of upper sand layers
friction angle of lower sand layers
load inclination
podstawa prostokątna
obciążenie pochyłe
analiza elementów skończonych
nośność podłoża
piaskowiec warstwowy
współczynnik proporcji
kąt tarcia
złoże piaskowe
nachylenie obciążenia
Opis:
Purpose: The study presents the numerical study to investigate the bearing capacity of the rectangular footing on layered sand (dense over loose) using ABAQUS software. Design/methodology/approach: Finite element analysis was used in this study to investigate the bearing capacity of the rectangular footing on layered sand and subjected to inclined load. The layered sand was having an upper layer of dense sand of varied thickness (0.25 W to 2.0 W) and lower layer was considered as loose sand of infinite thickness. The various parameters varied were friction angle of the upper dense (41° to 46°) and lower loose (31° to 36°) layer of sand and load inclination (0° to 45°), where W is the width of the rectangular footing. Findings: As the thickness ratio increased from 0.00 to 2.00, the bearing capacity increased with each load inclination. The highest and lowest bearing capacity was observed at a thickness ratio of 2.00 and 0.00 respectively. The bearing capacity decreased as the load inclination increased from 0° to 45°. The displacement contour shifted toward the centre of the footing and back toward the application of the load as the thickness ratio increased from 0.25 to 1.25 and 1.50 to 2.00, respectively. When the load inclination was increased from 0° to 30°, the bearing capacity was reduced by 54.12 % to 86.96%, and when the load inclination was 45°, the bearing capacity was reduced by 80.95 % to 95.39 %. The results of dimensionless bearing capacity compare favorably with literature with an average deviation of 13.84 %. As the load inclination was changed from 0° to 45°, the displacement contours and failure pattern shifted in the direction of load application, and the depth of influence of the displacement contours and failure pattern below the footing decreased, with the highest and lowest influence observed along the depth corresponding to 0° and 45°, respectively. The vertical settlement underneath the footing decreased as the load inclination increased, and at 45°, the vertical settlement was at its lowest. As the load inclination increased from 0° to 45°, the minimum and maximum extent of influence in the depth of the upper dense sand layer decreased, with the least and highest extent of influence in the range of 0.50 to 0.50 and 1.75 to 2.00 times the width of the rectangular footing, respectively, corresponding to a load inclination of 45° and 0°. Research limitations/implications: The results presented in this paper were based on the numerical study conducted on rectangular footing having length to width ratio of 1.5 and subjected to inclined load. However, further validation of the results presented in this paper, is recommended using experimental study conducted on similar size of rectangular footing. engineers designing rectangular footings subjected to inclined load and resting on layered (dense over loose) sand. Originality/value: No numerical study of the bearing capacity of the rectangular footing under inclined loading, especially on layered soil (dense sand over loose sand) as well as the effect of the thickness ratio and depth of the upper sand layer on displacement contours and failure pattern, has been published. Hence, an attempt was made in this article to investigate the same.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 108, 2; 49--62
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Free vibration behaviour of thin-walled concrete box-girder bridge using Perspex sheet experimental model
Autorzy:
Verma, V.
Nallasivam, K.
Powiązania:
https://bibliotekanauki.pl/articles/1818786.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
concrete box-girder bridge
perspex sheet model
modal analysis
finite element method
Matlab
most betonowy
most dźwigarowy
analiza modalna
metoda elementów skończonych
Opis:
Purpose: Curved box-girder bridges offers an excellent solution to the problems associated with traffic congestion. However, owing to their complex geometry, they are subjected to shear lag, torsional warping and cross-sectional distortion, which must be assessed in their study and design. Furthermore, the dynamic behaviour of curved bridges adds to the complexity of the issue, emphasizing the importance of studying free vibration. The purpose of this study is to numerically model the concrete curved box-girder bridge considering torsional warping, distortion and distortional warping effects and to identify key parameters that influence the free vibration response of the box-girder bridge by validating it with experimental and analytical studies. Design/methodology/approach: The concrete bridge is numerically modelled by means of computationally effective thin-walled box-beam finite elements that consider torsional warping, distortion and distortional warping, which are prominent features of thinwalled box-girders. The free vibration analysis of the concrete curved box-girder bridge is performed by developing a finite element based MATLAB program. Findings: The identification of critical parameters that influence the free vibration behaviour of curved thin-walled concrete box-girder bridges is one of the main findings of the study. Each parameter and its effect has been extensively discussed. Research limitations/implications: The study limits for the preliminary design phase of thin-walled box-girder bridge decks, where a complete three-dimensional finite element analysis is unnecessary. The current approach can be extended to future research using a different method, such as finite element grilling technique on multi-span curved bridges having unequal span. Originality/value: The current research implements a finite element formulation in combination with thin-walled beam theory, where an extensive parametric study is conducted on the free vibration behaviour of a concrete thin-walled box-girder bridge, while also accounting for their complex structural actions. The validity of the given numerical formulation is demonstrated by a comparison of the natural frequencies found experimentally. The study carried out will be of great importance for engineers to help them anticipate the modal characteristics of a curved concrete thin-walled girder bridge, which will further be useful for evaluating their dynamic response analysis.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 106, 2; 56--76
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies