Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kulyk, V. V." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Investigation of structural-geometric parameters and elemental composition of spherical VT20 alloy powders
Autorzy:
Duriagina, Z. A.
Filimonov, O. S.
Kulyk, V. V.
Lemishka, I. A.
Kuziola, R.
Powiązania:
https://bibliotekanauki.pl/articles/368582.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
spherical VT20 alloy powders
structural-geometric parameters
additive technologies
fluidity
bulk density
hydrodynamic radius
proszek sferyczny
technologie przyrostowe
płynność
gęstość objętościowa
promień hydrodynamiczny
Opis:
Purpose: Identification of structural-geometrical parameters, technological properties and elemental composition of spherical powders in a wide fraction range with respect to the VT20 alloy has been carried out. This is important for evaluating the optimum filling of a given volume by mixture of powders of different fractions during 3D printing. Design/methodology/approach: During the investigation of spherical Ti-alloy powders, a comprehensive approach was performed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Dynamic Light Scattering (DLS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The surface morphology of the powders was studied on a Tuescan Vega 3 Scanning Electron Microscope. Using the Quantax energy dispersive spectrometer, element distribution maps were obtained and histograms of element distribution in the investigated powders were constructed. ICP-MS analysis was performed to clarify the elemental composition. DLS analysis using Malvern's Zetasizer Nano-ZS equipment allowed us to determine the functional parameters (hydrodynamic radius – Rh, zeta potential – z and specific conductivity) of particles of titanium alloy powder that indirectly indicate a tendency to form conglomerates. Findings: According to the microscopic examinations, the VT20 alloy powder consists of globular-shaped particles with the lamellar traces on their surfaces. The uniformity of the chemical element distribution within each fraction of the investigated powders was confirmed by EDS, and the full conformity of the powder fractions with the elemental composition of the VT20 alloy was confirmed by ICP-MS. The DLS method allowed to establish that the formation of conglomerates would not occur within the studied fractions of the VT20 alloy powder. Research limitations/implications: The use of high sensitive investigation methods gives understanding of the mechanisms of fine structure formation and possibility to control the processes of powder coagulation in the stage of electrostatic interactions. Practical implications: The obtained results can be used for the formation of fine spherical particles of the powder, but at the same time, these technologies can be extended for the particles of non-spherical shape. Originality/value: The DLS method allowed to establish that the formation of conglomerates would not occur within the studied fractions of the VT20 alloy powder. This, in turn, will improve powder melting during 3D printing. The measured zeta potential values allowed us to reveal mechanisms of fine structure formation and to control the processes of powder coagulation in the stage of electrostatic interactions.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 95, 2; 49-56
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of structure and morphology of surface layers formed on TRIP steel by the femtosecond laser treatment
Autorzy:
Duriagina, Z. A.
Tepla, T. L.
Kulyk, V. V.
Kosarevych, R. Ya.
Vira, V. V.
Semeniuk, O. A.
Powiązania:
https://bibliotekanauki.pl/articles/367952.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
femtosecond laser
TRIP steel (03X13AG19)
image processing algorithms
digital image analysis
metallographic complex
laser femtosekundowy
stal TRIP
algorytmy przetwarzania obrazu
cyfrowa analiza obrazu
Opis:
Purpose: The purpose of the work is to demonstrate the possibility of using a femtosecond laser for forming surface layers with an adjustable microstructure on the surface of TRIP steel 03X13AG19, and processing the obtained images using digital complexes. Design/methodology/approach: A laser treatment of TRIP steel (03X13AG19) with pulses of femtosecond duration was carried out in a melting mode. The source of the radiation is a femtosecond titanium-sapphire Ti:Al2O3 complex consisting of a predefining femtosecond generator “Mira Optima 900-F” and regenerative amplifier Legend F-1K-HE. Peculiarities of the surface structure of irradiated samples were studied using a Solver P47-PRO atomic force microscope. The structural-geometric parameters of the surface of the investigated steel treated with the femtosecond laser were determined using the software package Nova 1.0.26.1443 and the functions of the Image Analysis. Microstructural analysis was performed using a raster electron microscope JSM 6700F and a METAM-1P microscope. In this work, the digitization of images of microstructures obtained as a result of surface irradiation by highly concentrated energy streams of femtosecond duration has been carried out. The analysis of the surface structure of laser-structured materials was carried out using a metallographic complex with the software ImProcQCV. Findings: It has been revealed that the predetermined change of the laser treatment mode changes the microrelief and the shape and size of the fragments of the surface structure of the investigated steel. The use of digital image processing allowed to generalize the morphological features of the surface structure, to assess in detail the character of the microrelief, and to monitor under in-situ mode the structure and properties of the surface of the material being studied. Research limitations/implications: The obtained research results can be applied to stainless steels of various structural classes. Practical implications: Surface digitization significantly reduces the time for research, improves the quality and accuracy of the data obtained, makes it possible to conduct in-situ researches with the further implementation of the results using the Internet of Things technologies. Originality/value: A comprehensive approach is proposed for the estimation of parameters of laser-induced periodic surface structures (LIPSS) using a metallographic complex with the software ImProcQCV.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 93, 1-2; 5-19
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The character of the structure formation of model alloys of the Fe-Cr-(Zr, Zr-B) system synthesized by powder metallurgy
Autorzy:
Duriagina, Z. A.
Romanyshyn, M. R.
Kulyk, V. V.
Kovbasiuk, T. M.
Trostianchyn, A. M.
Lemishka, I. A.
Powiązania:
https://bibliotekanauki.pl/articles/366907.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
model alloys
phase diagram
microstructure
microhardness
XRD analysis
stop modelowy
diagram fazowy
mikrostruktura
mikrotwardość
analiza XRD
Opis:
Purpose: The purpose of the work is to synthesize and investigate the character of structure formation, phase composition and properties of model alloys Fe75Cr25, Fe70Cr25Zr5, and Fe69Cr25Zr5B1. Design/methodology/approach: Model alloys are created using traditional powder metallurgy approaches. The sintering process was carried out in an electric arc furnace with a tungsten cathode in a purified argon atmosphere under a pressure of 6·104 Pa on a water cooled copper anode. Annealing of sintered alloys was carried out at a temperature of 800°C for 3 h in an electrocorundum tube. The XRD analysis was performed on diffractometers DRON-3.0M and DRON-4.0M. Microstructure study and phase identification were performed on a REMMA-102-02 scanning electron microscope. The microhardness was measured on a PMT-3M microhardness meter. Findings: When alloying a model alloy of the Fe-Cr system with zirconium in an amount of up to 5%, it is possible to obtain a microstructure of a composite type consisting of a mechanical mixture of a basic Fe2(Cr) solid solution, solid solutions based on Laves phases and dispersive precipitates of these phases of Fe2Zr and FeCrZr compositions. In alloys of such systems or in coatings formed based on such systems, an increase in hardness and wear resistance and creep resistance at a temperature about 800°C will be reached. Research limitations/implications: The obtained results were verified during laser doping with powder mixtures of appropriate composition on stainless steels of ferrite and ferrite-martensitic classes. Practical implications: The character of the structure formation of model alloys and the determined phase transformations in the Fe-Cr, Fe-Cr-Zr, and Fe-Cr-B-Zr systems can be used to improve the chemical composition of alloying plasters during the formation of ferrite and ferrite-martensitic stainless steel coatings. Originality/value: The model alloys were synthesized and their phase composition and microstructure were studied; also, their microhardness was measured. The influence of the chemical composition of the studied materials on the character of structure formation and their properties was analysed.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 100, 2; 49-57
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies