Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Baba, A." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Effect of heat treatment on microhardness of electroless Ni-YSZ cermet coating
Autorzy:
Bahiyah Baba, N.
Ghazali, A. S.
Abdul Rahman, A. H.
Sharif, S.
Powiązania:
https://bibliotekanauki.pl/articles/2201036.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Ni-YSZ
cermet
coating
microhardness
heating temperature
heating time
electroless nickel
powłoka
mikrotwardość
temperatura nagrzewania
czas nagrzewania
bezprądowe powlekanie niklem
Opis:
Purpose: The paper discussed the effect of heat treatment on electroless nickel-yttria-stabilised zirconia (Ni-YSZ) cermet coating. Ni-YSZ cermet coating has potential applications such as cutting tools, thermal barriers, solid oxide fuel anode, and various others. The compatibility of ceramic YSZ and metallic nickel in terms of the mechanical properties such as hardness by varying the heating temperature, time and ceramic particle size is highlighted. Design/methodology/approach: Ni-YSZ cermet coating was deposited onto a highspeed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400°C and 1-2 hours, respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation of the cermet coating was carried out using JOEL Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray (EDX) JSM 7800F. The crystallographic structure of materials was analysed by X-ray diffraction (XRD) Bruker D8 Advance instrument. Findings: It was found that the microhardness of Ni-YSZ cermet coating with the ratio of 70:30, respectively, is directly proportional to the heating temperature and time. Heating the Ni-YSZ cermet coating at 300°C from room temperature (rtp) to 1 hour shows a 12% microhardness increment, while from 1 to 2 hours gives a 19% increment. Compared to heating at 350°C and 400°C, the increment is more significant at 33% and 49% for rtp to 1 hour and 8% and 16% for 1 to 2 hours, respectively. In addition, the effect of varying YSZ particle size in the Ni-YSZ cermet gave response differently for heating temperature and heating time. Research limitations/implications: The paper is only limited to the discussion of the heat treatment effect on Ni-YSZ cermet coating hardness property. The tribological effect will be in future work. Practical implications: The microhardness data may vary due to the Vickers microhardness force applied and the amount of ceramic particle incorporation and phosphorus content in the nickel matrix. Originality/value: The value of this work is the compatibility of the ceramic YSZ and metallic nickel matrix in terms of mechanical properties, such as hardness, upon heat treatment.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 113, 1; 5--12
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parametric optimisation of microhardness on heat-treated electroless Ni-YSZ cermet coating
Autorzy:
Bahiyah Baba, N.
Ghazali, A. S.
Abdul Rahman, A. H.
Sharif, S
Powiązania:
https://bibliotekanauki.pl/articles/2172165.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
full factorial
electroless
Ni-YSZ
cermet
coating
microhardness
treating temperature
treating time
silnia
bezprądowy
powłoka
mikrotwardość
temperatura obróbki
czas obróbki
Opis:
Purpose The paper discusses the parametric optimisation of the electroless Ni-YSZ cermet coating microhardness upon heat treatment. Heat treatment is a process to increase the mechanical properties of the electroless nickel coating and it can be enhanced by manipulating its parameters. Parametric optimisation is conducted by the design of experiment full factorial 3x3 with 27 runs. Treating temperature, treating time and ceramic particle size parameters at 3-level are evaluated using statistical tool ANOVA in Minitab20. Design/methodology/approach Ni-YSZ cermet coating is deposited onto a high-speed steel substrate using the electroless nickel co-deposition method. The temperature and time were varied in a range of 300-400oC and 0-2 hours respectively. The microhardness measurements were carried out using a Vickers microhardness tester (Shimadzu) according to ISO 6507-4. The surface characterisation was analysed using Cambridge Stereoscan 90 Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray Analysis (EDXA). Findings The optimum condition in obtaining high microhardness on Ni-YSZ cermet coating is evaluated by statistical tool ANOVA in Minitab20 software. It is found that the most significant parameter for high microhardness is at the treating temperature of 400oC followed by treating time at 2 hours using nano-sized YSZ particles. The ceramic particle size is found not a significant parameter in obtaining a high microhardness, however it has effect on interaction between treating temperature and treating time. Research limitations/implications The paper only limits to the optimisation condition of microhardness on Ni-YSZ cermet coating hardness property by varying heat treatment parameters. Practical implications The optimisation condition obtained might only applicable to the electroless Ni-YSZ cermet coating with similar electroless nickel solution and treatments. Originality/value The value of this work is the heat treatment parametric optimisation to obtain high microhardness on electroless Ni-YSZ cermet coating by using the design of experiment 3-level full factorial.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 112, 1; 33--41
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of kenaf loading on kenaf/ABS composites structure and thermal properties
Autorzy:
Mashelmie, S.
Rabiatul Manisah, M.
Bahiyah Baba, N.
Mohd, A.
Powiązania:
https://bibliotekanauki.pl/articles/2172154.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
kenaf fibre
ABS
polymer composites
MFI
TGA
DSC
włókna kenafu
kompozyty polimerowe
wskaźnik szybkości płynięcia
analiza termograwimetryczna
skaningowa kalorymetria różnicowa
Opis:
Purpose Many manufacturers have recently become interested in using fiber-reinforced polymer composites (FRPs) in structural applications. Synthetic fibres, such as carbon and glass fibres, have been commercialised internationally for decades, but they cause environmental issues because synthetic fibres are non-biodegradable and difficult to recycle once they have served their purpose, potentially polluting the environment. Thus, natural fibre composites like kenaf is a possible replacement for synthetic fibre due to their superior physical and mechanical properties. Kenaf appears to be the best candidate for replacing synthetic fibres in order to accomplish the goal of environmental preservation while also displaying excellent properties such as equivalent specific strength, low density, and renewable resources. Design/methodology/approach The kenaf fiber was treated in KOH and added to ABS matrix to produce new composites at different loading (10, 15, 20 and 25 wt.%) by using Two Roll Mill machine. The influence of the fiber on the composites properties was evaluated. The produced material was subjected to SEM, MFI, TGA and DSC analysis. Findings The incorporation of the treated kenaf fiber has an influence on the properties of kenaf/ABS composites. The addition of 10 wt.% kenaf was found to be the best loading with MFI value, initial degradation temperature and glass transition temperature at 0.8208 g/10 min, 322.63°C and 130°C respectively. The fiber was well dispersed in the matrix and shown good adhesion to the ABS. The addition of treated fiber contribute to a reduction in the MFI, improved the thermal stability of the composites and typical effects of Tg of the composite compare to pure ABS. Research limitations/implications The results suggest the need to continue the study in order to further analyse higher kenaf loading and shed more light on the properties of the composites to improve understanding of kenaf/ABS composites. Originality/value Obtained results are a solution to alternative of synthetic fibers, which may contribute to the sustainable development of composites materials industry through the utilization of kenaf fiber with ABS matrix.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 111, 2; 49--56
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Plastic filling simulation comparison analysis of the gating system in injection moulding parameter
Autorzy:
Umor, M. Z.
Mohd, A.
Efendee, A. M.
Khir, M.
Bahiyah Baba, N.
Powiązania:
https://bibliotekanauki.pl/articles/2201029.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
filling simulation
gating system
moulding parameters
symulacja
system bramkowania
parametry wtrysku
Opis:
Purpose: The paper is discussed the anticipation of the simulation software precision with the real moulding process by setting up the distinctive metering stroke separation. Design/methodology/approach: The Inventor CAD software was used to design the product experiment and perform the simulation by applying MoldFlow application to produce the processing parameter defining for the injection moulding machines. Findings: The results predicted by this filling simulation appears reasonable result as compared to the injected product. Prediction analysis given by the software is exceptionally valuable for the injection moulding parameter setting machines which can diminish the time of mould setup and can reduce the trial stage on the production line. Research limitations/implications: The gating system is the most crucial part in injection moulding process and the limitation is to get the accurate filling time and injection pressure to ensure the cavity is fully filled before the material at the gate solidify. Originality/value: Gating system configurations are utilized to optimize the filling conditions of injection moulding parts. This important element was developed for achieving product quality. The utilize of simulation software is exceptionally supportive in the model designing stage to predict the quality and process capacity for the product. This paper presents the filling simulation of the side gate system to the injection moulding parameter.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 112, 2; 64--69
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of particle size on surface roughness and morphology of heat-treated electroless Ni-YSZ coating
Autorzy:
Bahiyah Baba, N.
Ghazali, A. S.
Azinee, S. N.
Abdul Rahman, A. H.
Sharif, S.
Powiązania:
https://bibliotekanauki.pl/articles/2201055.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
particle size
electroless coatings
Ni-YSZ
heat treatment
surface roughness
surface morphology
wielkość cząstek
powłoka
powlekanie bezprądowe
obróbka cieplna
chropowatość powierzchni
morfologia powierzchni
Opis:
Purpose The paper discusses the surface characterisation of electroless nickel-yttria-stabilised zirconia (Ni-YSZ) coating with varying YSZ particle sizes and undergoes heat treatment at a temperature between 300-400°C for 1-2 hours for wear resistance purposes. This finding will be helpful to the application of Ni-YSZ as an alternative coating for cutting tools. Design/methodology/approach The surface characterisation was analysed using JOEL Scanning Electron Microscope (SEM) coupled with Energy Dispersive X-ray (EDX) JSM 7800F. The crystallographic structure of materials was analysed by X-ray diffraction (XRD) Bruker D8 Advance instrument. The Ni-YSZ coating was deposited using electroless nickel co-deposition of 8YSZ ceramic particles with a nano, mixed and microparticle sizes onto a high-speed steel (HSS) substrate. The coatings were heat treated at temperature 300-400°C and time 1-2 hours. The surface roughness was measured using Mitutoyo surface roughness tester SJ-301. Findings The electroless Ni-YSZ coating deposited has an average thickness of 30 µm. It is found that the coating morphology electroless coating without YSZ particle incorporation (EN) and Ni-YSZ nano (N) is smoother compared to the Ni-YSZ mixed (NM) and Ni-YSZ micro (M). The EDS composition analysis shows the YSZ content in the electroless Ni-YSZ coating for N samples is the lowest, whereas NM samples are the highest. This resulted in the surface roughness behaviour where the mixed-size YSZ particle gives the highest roughness at all temperatures. The XRD analysis shows that heating temperatures above 300°C caused the precipitation of Ni3P crystalline. Research limitations/implications Previous studies in the surface characterisation of electroless nickel composite are scarce; thus, the study has limitations in finding supporting data. Originality/value The surface characterisation especially related to the surface roughness of the electroless nickel, either the Ni-P or composites or alloys are rarely reported. Thus, this study enlightened the effect of particle size on surface roughness and morphology of heat-treated coatings.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 114, 1; 5--14
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimisation of variation coolant system techniques in machining aluminium alloy Al319
Autorzy:
Zainal Ariffin, S.
Efendee, A. M.
Redhwan, A. A. M.
Alias, M.
Arifuddin, A.
Kamrol Amri, M.
Mohd Ali, M.
Khalil, K.
Aminullah, A. R. M.
Hasnain, A. R.
Baba, N. B.
Powiązania:
https://bibliotekanauki.pl/articles/2201047.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
aluminium alloy 319
coated cemented carbide Al2O3
surface roughness
response surface method
stop aluminium
węglik spiekany powlekany
chropowatość powierzchni
metoda powierzchni odpowiedzi
Opis:
Purpose Cutting parameters are often chosen for machining by machine operators in the industry. The experience and efficiency of the machine operator in producing a quality product are frequently used to decide parameter selection—low productivity results from improper parameter selection, inefficient machining, and technological issues. Today's key issues in the machining industry are focusing on increasing machining performance on surface roughness while minimising coolant usage. The study's objective is to enhance the performance of the nozzle lubrication system during the turning operation of an aluminium alloy 319 workpieces (Al319) to generate good surface roughness by applying turning parameters such as cutting speed, feed rate, and the depth of cut. Design/methodology/approach Response Surface Method (RSM) was used to create the experimental method for this investigation, carried out using a CNC lathe machine with two axial movements and a wet cooling nozzle with a size of 1.0 mm. Synthetic soluble lubricants, Al2O3-coated cemented carbide inserts, and Aluminium alloy 319 were utilised as cutting tools and workpiece materials. Findings To study the influence of cutting parameters on surface roughness, the Analysis of Variance (ANOVA) approach was utilised while the response surface method was performed to achieve an optimum machining performance (RSM). When comparing dry and wet cooling systems, the size of 1.0 mm nozzle shows appropriate surface roughness. According to the ANOVA analysis, the key factor impacting the surface roughness as machining performance in lubrication technique experiments was the utilisation of 1.0 mm nozzle size. Research limitations/implications The findings of combination machining parameters at a cutting speed of 270 m/min and a cutting depth of 0.60 mm at a feed rate of 0.08 mm/min offered the best results, achieving a surface roughness, Ra of 0.94 µm. Practical implications The use of coolant size nozzle 1.0 mm technology combined with the use of correct machining parameters can improve machining cuts. Originality/value The novel size of 1.0 mm nozzle in this current research is also valuable for reducing and increasing productivity in the machining business, as well as reducing dependency on machining operators' experience and abilities.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 113, 2; 72--77
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies