Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pawlaczyk-Łuszczyńska, Małgorzata" wg kryterium: Autor


Wyświetlanie 1-7 z 7
Tytuł:
Impact of very high-frequency sound and low-frequency ultrasound on people – the current state of the art
Autorzy:
Pawlaczyk-Łuszczyńska, Małgorzata
Dudarewicz, Adam
Powiązania:
https://bibliotekanauki.pl/articles/2116587.pdf
Data publikacji:
2020-06-16
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
low-frequency airborne ultrasound
high-frequency sound
occupational exposure
impact on humans
auditory effects
non-auditory effects
Opis:
For several decades, low-frequency ultrasound (<100 kHz) has been widely used in industry, medicine, commerce, military service and the home. The objective of the study was to present the current state of the art on the harmful effects of low-frequency airborne ultrasound on people, especially in occupational settings. The scientific literature search was performed using accessible medical and other databases (WOS, BCI, CCC, DRCI, DIIDW, KJD, MEDLINE, RSCI, SCIELO and ZOOREC), and the obtained results were then hand-searched to eliminate non-relevant papers. This review includes papers published in 1948–2018. The potential effects of the low-frequency airborne ultrasound have been classified as auditory and non-auditory effects, including subjective, physiological, and thermal effects. In particular, already in the 1960–1970s, it was demonstrated that ultrasonic exposure, when sufficiently intense, appeared to result in a syndrome involving nausea, headache, vomiting, disturbance of coordination, dizziness, and fatigue, and might cause a temporary or permanent hearing impairment. However, since that time, not too much work has been done. Further studies are needed before any firm conclusions can be drawn about the auditory and non-auditory effects of low-frequency airborne ultrasound.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2020, 33, 4; 389-408
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reinvigorating engineered noise controls: a systems approach
Autorzy:
Slagley, Jeremy
Dudarewicz, Adam
Pawlaczyk-Łuszczyńska, Małgorzata
Slagley, Francis
Powiązania:
https://bibliotekanauki.pl/articles/21375384.pdf
Data publikacji:
2023-11-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
hearing loss
noise
personal protective equipment
occupational health
noise-induced
systems analysis
Opis:
Objectives Hearing loss is a major worldwide health issue affecting an estimated 1.5 billion people. Causes of hearing loss include genetics, chemicals, medications, lifestyle habits such as smoking, and noise. Noise is probably the largest contributing factor for hearing loss. Noise arises from the workplace, ambient environment, and leisure activities. The easiest noise sources to control are workplace and environmental. Workplace noise is unique in that the employer is responsible for the noise and the worker. Also, workers may be exposed to much higher levels of noise than they would accept elsewhere. Employers follow the traditional hierarchy of controls (substitution/engineering, administrative, personal protective equipment [PPE]). Substituting or engineering a lower noise level actually reduces the hazard present to the worker but demand more capital investment. Administrative and PPE controls can be effective, but enforcement and motivation are essential to reducing risk and there is still some hearing loss for a portion of the workers. The challenge is to estimate the costs more clearly for managers. A systems engineering approach can help visualize factors affecting hearing health. Material and Methods In this study, a systems engineering causal loop diagram (CLD) was developed to aid in understanding factors and their interrelationships. The CLD was then modeled in VenSim. The model was informed from the authors’ expertise in hearing health and exposure science. Also, a case study was used to test the model. The model can be used to inform decision-makers of holistic costs for noise control options, with potentially better hearing health outcomes for workers. Results The CLD and cost model demonstrated a 4.3 year payback period for the engineered noise control in the case study. Conclusions Systems thinking using a CLD and cost model for occupational hearing health controls can aid organizational managers in applying resources to control risk.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2023, 36, 5; 672-684
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exposure to excessive sounds and hearing status in academic classical music students
Autorzy:
Pawlaczyk-Łuszczyńska, Małgorzata
Zamojska-Daniszewska, Małgorzata
Dudarewicz, Adam
Zaborowski, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2161930.pdf
Data publikacji:
2017-02-21
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
noise-induced hearing loss
music students
exposure to excessive sounds
pure-tone audiometry
hearing threshold levels
high-frequency notches
Opis:
Objectives The aim of this study was to assess hearing of music students in relation to their exposure to excessive sounds. Material and Methods Standard pure-tone audiometry (PTA) was performed in 168 music students, aged 22.5±2.5 years. The control group included 67 subjects, non-music students and non-musicians, aged 22.8±3.3 years. Data on the study subjects’ musical experience, instruments in use, time of weekly practice and additional risk factors for noise-induced hearing loss (NIHL) were identified by means of a questionnaire survey. Sound pressure levels produced by various groups of instruments during solo and group playing were also measured and analyzed. The music students’ audiometric hearing threshold levels (HTLs) were compared with the theoretical predictions calculated according to the International Organization for Standardization standard ISO 1999:2013. Results It was estimated that the music students were exposed for 27.1±14.3 h/week to sounds at the A-weighted equivalent-continuous sound pressure level of 89.9±6.0 dB. There were no significant differences in HTLs between the music students and the control group in the frequency range of 4000–8000 Hz. Furthermore, in each group HTLs in the frequency range 1000–8000 Hz did not exceed 20 dB HL in 83% of the examined ears. Nevertheless, high frequency notched audiograms typical of the noise-induced hearing loss were found in 13.4% and 9% of the musicians and non-musicians, respectively. The odds ratio (OR) of notching in the music students increased significantly along with higher sound pressure levels (OR = 1.07, 95% confidence interval (CI): 1.014–1.13, p < 0.05). The students’ HTLs were worse (higher) than those of a highly screened non-noise-exposed population. Moreover, their hearing loss was less severe than that expected from sound exposure for frequencies of 3000 Hz and 4000 Hz, and it was more severe in the case of frequency of 6000 Hz. Conclusions The results confirm the need for further studies and development of a hearing conservation program for music students. Int J Occup Med Environ Health 2017;30(1):55–75
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2017, 30, 1; 55-75
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hearing status of people occupationally exposed to ultrasonic noise
Autorzy:
Dudarewicz, Adam
Zamojska-Daniszewska, Małgorzata
Zaborowski, Kamil
Pawlaczyk-Łuszczyńska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2084911.pdf
Data publikacji:
2022-06-08
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
noise
pure-tone audiometry
otoacoustic emissions
noise-induced hearing loss
ultrasonic noise
extended high-frequency audiometry
Opis:
ObjectivesThe aim of the study was to evaluate the hearing status of operators of low-frequency ultrasonic devices compared to employees exposed to audible noise at a similar A-weighted sound pressure level (SPL) but without ultrasonic components.Material and MethodsStandard pure-tone audiometry, extended high-frequency audiometry (EHFA), transient-evoked otoacoustic emissions (TEOAE), and distortion-product otoacoustic emissions (DPOAE), as well as questionnaire surveys were conducted among 148 subjects, aged 43.1±10.8 years, working as ultrasonic device operators for 18.7±10.6 years. Their exposure to noise within the ultrasonic and audible frequency range was also evaluated. The control group comprised 168 workers, adjusted according to gender, age (±2 years), tenure (±2 years), and the 8-hour daily noise exposure level (LEX,8h) of ±2 dB.ResultsThe ultrasonic device operators and the control group were exposed to audible noise at LEX,8h of 80.8±3.9 dB and 79.1±3.4, respectively. The Polish maximum admissible intensity (MAI) values for audible noise were exceeded in 16.8% of the ultrasonic device operators, while 91.2% of them were exposed to ultrasonic noise at SPL>MAI values. There were no significant differences between the groups in terms of the hearing threshold levels (HTLs) up to 3 kHz, while the ultrasonic device operators exhibited significantly higher (worse) HTLs, as compared to the control group, in the range of 4–14 kHz. The results of the DPOAE and TEOAE testing also indicated worse hearing among the ultrasonic device operators. However, the differences between the groups were more pronounced in the case of EHFA and DPOAEs.ConclusionsThe outcomes of all hearing tests consistently indicated worse hearing among the ultrasonic device operators as compared to the control group. Both EHFA and DPOAE seem to be useful tools for recognizing early signs of hearing loss among ultrasonic device operators.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2022, 35, 3; 309-325
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Noise exposure and hearing status among employees using communication headsets
Autorzy:
Pawlaczyk-Łuszczyńska, Małgorzata
Dudarewicz, Adam
Zaborowski, Kamil
Zamojska-Daniszewska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2153012.pdf
Data publikacji:
2022
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
noise-induced hearing loss
pure-tone audiometry
otoacoustic emissions
communication headsets
occupational exposure to noise
extended high-frequency audiometry
Opis:
Objectives The objective of this study was to assess the hearing of employees using communication headsets with regard to their exposure to noise. Material and Methods The study group comprised 213 employees, including 21 workers of the furniture industry, 15 court transcribers and 177 call center operators, aged 19–55 years, working with headsets for a period of up to 25 years. All the participants underwent a standard puretone audiometry, extended high-frequency audiometry (EHFA) as well as transient-evoked otoacoustic emissions (TEOAEs) and distortion-product otoacoustic emissions (DPOAEs). Noise exposure from headsets was evaluated using the microphone in a real ear technique according to PN-EN ISO 11904-1:2008. Results Personal daily noise exposure levels ranged 57–96 dB and exceeded 85 dB only in 1.4% of the call center operators. Forty-two percent of the participants had bilateral normal hearing in the standard frequency range of 250–8000 Hz, and 33% in the extended highfrequency range of 9–16 kHz. It was found that DPOAEs were present bilaterally in 59% of the participants. Reproducibility of TEOAE at >70% and signal-to-noise ratio at >6 was exhibited by 42% and 17% of them, respectively. The 3 subgroups of workers differed in age, gender, noise exposure and type of headsets in use. However, after adjusting for age and gender, significant differences between these subgroups in terms of hearing were mostly visible in EHFA. A significant impact of age, gender, daily noise exposure level and current job tenure on hearing tests results was also noted among the call center operators and the transcribers. The most pronounced were the effects of age and gender, whereas the impact of the daily noise exposure level was less evident. Conclusions It seems that EHFA is useful for recognizing early signs of noise-induced hearing loss among communication headset users. However, further studies are needed before any firm conclusions concerning the risk of hearing impairment due to the use of such devices can be drawn.
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2022, 35, 5; 585-614
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of annoyance from the wind turbine noise: A pilot study
Autorzy:
Pawlaczyk-Łuszczyńska, Małgorzata
Dudarewicz, Adam
Zaborowski, Kamil
Zamojska-Daniszewska, Małgorzata
Waszkowska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/2178846.pdf
Data publikacji:
2014-06-21
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
wind turbines
noise
health effects
annoyance
Opis:
Objectives: The overall aim of this study was to evaluate the perception of and annoyance due to the noise from wind turbines in populated areas of Poland. Material and Methods: The study group comprised 156 subjects. All subjects were asked to fill in a questionnaire developed to enable evaluation of their living conditions, including prevalence of annoyance due to the noise from wind turbines and the self-assessment of physical health and well-being. In addition, current mental health status of the respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where the respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. Results: It has been shown that the wind turbine noise at the calculated A-weighted SPL of 30-48 dB was noticed outdoors by 60.3% of the respondents. This noise was perceived as annoying outdoors by 33.3% of the respondents, while indoors by 20.5% of them. The odds ratio of being annoyed outdoors by the wind turbine noise increased along with increasing SPLs (OR = 2.1; 95% CI: 1.22-3.62). The subjects' attitude to wind turbines in general and sensitivity to landscape littering was found to have significant impact on the perceived annoyance. About 63% of variance in outdoors annoyance assessment might be explained by the noise level, general attitude to wind turbines and sensitivity to landscape littering. Conclusions: Before firm conclusions can be drawn further studies are needed, including a larger number of respondents with different living environments (i.e., dissimilar terrain, different urbanization and road traffic intensity).
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2014, 27, 3; 364-388
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The adaptation of noise-induced temporary hearing threshold shift predictive models for modelling the public health policy
Autorzy:
Dudarewicz, Adam
Pawlaczyk-Łuszczyńska, Małgorzata
Zaborowski, Kamil
Pontoppidan, Niels H.
Wolniakowska, Anna
Bramsløw, Lars
Christensen, Jeppe H.
Katrakazas, Panagiotis
Brdaric, Dario
Samardžić, Senka
Śliwińska-Kowalska, Mariola
Powiązania:
https://bibliotekanauki.pl/articles/2197834.pdf
Data publikacji:
2023-03-02
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
noise
noise-induced hearing loss
noise exposure
public health policy
temporary threshold shift
entertainment noise
Opis:
Objectives It has been shown that monitoring temporary threshold shift (TTS) after exposure to noise may have a predictive value for susceptibility of developing permanent noise-induced hearing loss. The aim of this study is to present the assumptions of the TTS predictive model after its verification in normal hearing subjects along with demonstrating the usage of this model for the purposes of public health policy. Material and Methods The existing computational predictive TTS models were adapted and validated in a group of 18 bartenders exposed to noise at the workplace. The performance of adapted TTS predictive model was assessed by receiver operating characteristic (ROC) analysis. The demonstration example of the usage of this model for estimating the risk of TTS in general unscreened population after exposure to loud music in discotheque bars or music clubs is provided. Results The adapted TTS predictive model shows a satisfactory agreement in distributions of actual and predicted TTS values and good correlations between these values in examined bartenders measured at 4 kHz, and as a mean at speech frequencies (0.5–4 kHz). An optimal cut-off level for recognizing the TTS events, ca. 75% of young people (aged ca. 35 years) may experience TTS >5 dB, while <10% may exhibit TTS of 15–18 dB. Conclusions The final TTS predictive model proposed in this study needs to be validated in larger groups of subjects exposed to noise. Actual prediction of TTS episodes in general populations may become a helpful tool in creating the hearing protection public health policy. Int J Occup Med Environ Health. 2023;36(1):125–38
Źródło:
International Journal of Occupational Medicine and Environmental Health; 2023, 36, 1; 125-138
1232-1087
1896-494X
Pojawia się w:
International Journal of Occupational Medicine and Environmental Health
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies