Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "microstrip" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Design and Analysis of Circular Slotted Microstrip Patch Antenna
Autorzy:
Bhattacharyya, Kaustubh
Thangjam, Rupanda
Goswami, Sivaranjan
Sarmah, Kumaresh
Baruah, Sunandan
Powiązania:
https://bibliotekanauki.pl/articles/963802.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
impedance matching
microstrip
resonance frequency
complementary
split ring resonators
Opis:
This paper presents a novel complementary CPWfed slotted microstrip patch antenna for operation at 2.4 GHz, 5.2 GHz and 6.3 GHz frequencies. The primary structure consists of the complementary split ring resonator slots on a patch and the design is fabricated on FR-4 epoxy substrate with substrate thickness of 1.6 mm. The described structure lacks the presence of a ground plane and makes use of a number of circular complementary SRRs along with rectangular slots on the radiating patch. The structure provides a wide bandwidth of around 390 MHz, 470 MHz and 600 MHz at the three bands with return losses of -11.5 dB, -24.3996dB and -24.4226 dB, respectively. The inclusion of the rectangular slots in the CSRR based slot antenna with stairecase structure improved the performance with respect to return loss.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 3; 339-345
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on Metamaterial-based Bio-inspired Microstrip Antenna Array for 5G Enabled Mobile Health Technology
Autorzy:
Colaco, John
Cotta, Jillian
Powiązania:
https://bibliotekanauki.pl/articles/2055230.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
microstrip
antenna
bio-inspired
array
split-ring
resonators
metamaterial
5G
Opis:
5G is a fifth-generation wireless technology that enables extremely fast data transfers and massive connection capacity. Existing Mobile health technology requires more reliable connection power and data transfer rates. The purpose of this research is to design, analyse, and compare the performance of a bio-inspired lotus-shaped microstrip patch antenna array with two to three radiating elements. The proposed antenna utilizes proximity coupled indirect microstrip transmission line feeding technique operating in the 24 GHz-30 GHz frequency band. The results indicate that performance continues to improve as the number of radiating elements increases. Moreover, each radiating element is loaded with complementary and non-complementary split-ring resonators (SRRs). The performance of the proposed microstrip antenna array is then analysed and compared with and without split-ring resonators. The findings validate that the proposed bio-inspired metamaterial-based microstrip patch array antenna is more reliable and performs better than an antenna without SRRs.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 2; 201--207
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
E-shaped Aperture Coupled Microstrip Patch Array Antenna for High Speed Downlink Applications in Small Satellites
Autorzy:
Paul, Kajol Chandra
Ahmed, Anis
Powiązania:
https://bibliotekanauki.pl/articles/2055242.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
aperture coupled
circular polarization
corporate feed
microstrip patch array
small satellites
Opis:
For high speed downlinking of payload data from small satellites, a new 4×4 aperture coupled microstrip patch array antenna has been presented. The antenna is designed for the Ku band and a peak gain of 18.0 dBi is achieved within the impedance bandwidth from 11.75 GHz to 12.75 GHz. Wide bandwidth is achieved as the patch elements are excited through E-shaped slots having asymmetric side lengths and widths. Each square patch element of the array with truncated corners and appropriately placed slots generates right hand circularly polarized (RHCP) radiation with very high cross-polarization discrimination. A corporate feed network consisting of T-junctions and quarter-wave impedance transformers is developed to feed the array elements from a single coaxial port of 50 Ω. To improve the radiation from the patches and wave-guiding in the feed network, two types of Rogers substrates with different dielectric constant and thickness are considered. Our proposed microstrip patch array antenna of size 7.8 cm × 6.4 cm × 0.3 cm can perform efficiently with a downlink data rate as high as 4.6 Gbps for small satellites.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 47--56
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy Logic Based Intelligent Data Sensitive Security Model for Big Data in Healthcare
Autorzy:
Dubey, Somya
Verma, Dhanraj
Powiązania:
https://bibliotekanauki.pl/articles/2055246.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
microstrip patch
adaptive antennas
parabolic reflector
beamforming
antenna arrays
smart antenna
Opis:
An intelligent security model for the big data environment is presented in this paper. The proposed security framework is data sensitive in nature and the level of security offered is defined on the basis of the data secrecy standard. The application area preferred in this work is the healthcare sector where the amount of data generated through the digitization and aggregation of medical equipment’s readings and reports is huge. The handling and processing of this great amount of data has posed a serious challenge to the researchers. The analytical outcomes of the study of this data are further used for the advancement of the medical prognostics and diagnostics. Security and privacy of this data is also a very important aspect in healthcare sector and has been incorporated in the healthcare act of many countries. However, the security level implemented conventionally is of same level to the complete data which not a smart strategy considering the varying level of sensitivity of data. It is inefficient for the data of high sensitivity and redundant for the data of low sensitivity. An intelligent data sensitive security framework is therefore proposed in this paper which provides the security level best suited for the data of given sensitivity. Fuzzy logic decision making technique is used in this work to determine the security level for a respective sensitivity level. Various patient attributes are used to take the intelligent decision about the security level through fuzzy inference system. The effectiveness and the efficacy of the proposed work is verified through the experimental study.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 2; 245--250
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of 1x5 Planar Array Microstrip Antenna with Edge Weighting to Increase Gain
Autorzy:
Simanjuntak, Imelda Uli Vistalina
Sulistyaningsih
Heryanto
Astuti, Dian Widi
Powiązania:
https://bibliotekanauki.pl/articles/27311953.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
microstrip antenna
edge weighting
parasitic patch
proximity coupling
5G antenna gain
Opis:
Research on improving the performance of microstrip antennas is continuously developing the following technology; this is due to its light dimensions, cheap and easy fabrication, and performance that is not inferior to other dimension antennas. Especially in telecommunications, microstrip antennas are constantly being studied to increase bandwidth and gain according to current cellular technology. Based on the problem of antenna performance limitations, optimization research is always carried out to increase the gain to become the antenna standard required by 5G applications. This research aims to increase the gain by designing a 5-element microstrip planar array antenna arrangement at a uniform distance (lamda/2) with edge weights at a frequency of 2.6 GHz, Through the 1x5 antenna design with parasitic patch, without parasitic, and using proximity coupling.This study hypothesizes that by designing an N-element microstrip planar array antenna arrangement at uniform spacing (lamda/2) with edge weights, a multi-beam radiation pattern character will be obtained so that to increase gain, parasitic patches contribute to antenna performance. This research contributes to improving the main lobe to increase the gain performance of the 1x5 planar array antenna. Based on the simulation results of a 1x5 microstrip planar array antenna using a parasitic patch and edge weighting, a gain value of 7.34 dB is obtained; without a parasitic patch, a gain value of 7.03 dB is received, using a parasitic patch and proximity coupling, a gain value of 2.29 dB is obtained. The antenna configuration with the addition of a parasitic patch, even though it is only supplied at the end (edge weighting), is enough to contribute to the parameters impedance, return loss, VSWR, and total gain based on the resulting antenna radiation pattern. The performance of the 1x5 microstrip planar array antenna with parasitic patch and double substrate (proximity coupling), which is expected to contribute even more to the gain side and antenna performance, has yet to be achieved. The 1x5 planar array antenna design meets the 5G gain requirement of 6 dB.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 4; 683--690
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dual Port Antenna Combining Sensing and Communication Tasks for Cognitive Radio
Autorzy:
Nachouane, H.
Najid, A.
Tribak, A.
Riouch, F.
Powiązania:
https://bibliotekanauki.pl/articles/226370.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cognitive radio
microstrip antenna
UWB
coplanar waveguide
sensing and communication tasks
sensing antenna
Opis:
Dynamic spectrum access has been proposed as the effective solution to overcome the spectrum scarcity issue, supported by cognitive radio technology. Sensing and communication functions are both the most important tasks in cognitive radio systems. In this paper, an antenna system combining sensing and communication tasks is proposed to be integrated into cognitive radio front-ends. The sensing task is performed by means of an ultra-wideband quasi-omnidirectional antenna. Whilst the communication task is ensured by using a narrowband antenna. Both antennas have been designed on the same layer of an FR4 substrate, for manufacturing cost constraint. Therefore, the isolation between them must take into consideration. The measured mutual coupling of less than -18 dB is achieved over the whole impedance bandwidth. The proposed sensing antenna covers a wide range frequency bands ranging from 2 to 5.5 GHz. While the communication antenna operates at 2.8 GHz, and by adding inductors to the antenna, the resonant frequency can be tuned from 2.6 to 2.7 GHz. The whole antenna system was designed, fabricated, and tested. Measurement and simulation results prove the feasibility of the proposed structure for cognitive radio applications.
Źródło:
International Journal of Electronics and Telecommunications; 2016, 62, 2; 121-127
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Compact Quasi-Yagi Microstrip Patch Antenna with High Gain and Bandwidth for UWB Application
Autorzy:
Chowdhury, Hasanur Rahman
Hussain, Sakhawa
Powiązania:
https://bibliotekanauki.pl/articles/27311937.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Quasi Yagi microstrip patch antenna
FR4 substrate
ultra-wide bandwidth (UWB)
high antenna gain and low return loss
Opis:
A quasi-Yagi microstrip patch antenna with four directors and truncated ground plane has been designed and fabricated to have an ultra-wide bandwidth, high gain, low return loss and better directivity with center frequency at 3.40 GHz. After optimization, the proposed antenna yields an ultra-wide bandwidth of 1.20 GHz with lower and upper cutoff frequencies at 3.12 GHz and 4.32 GHz, respectively. High gain of 5.25 dB, return loss of -28 dB and directivity of 6.28 dB are obtained at resonance frequency of 3.40 GHz. The measured results of fabricated antenna have shown excellent agreement with the simulation results providing bandwidth of 1.34 GHz with lower and upper cutoff frequencies at 3.04 GHz and 4.38 GHz, respectively. The antenna gain of 5.33 dB, return loss of -44 dB are obtained at resonance frequency of 3.36 GHz. The dimension of the antenna is only of 65 mm x 45 mm ensuring compact in size.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 431--437
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies