Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "frequency model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Effect of Time-domain Windowing on Isolated Speech Recognition System Performance
Autorzy:
Ananthakrishna, Thalengala
Anitha, H.
Girisha, T.
Powiązania:
https://bibliotekanauki.pl/articles/2055228.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hidden Markov model
HMM
isolated speech recognition system
ISR
Kannada language
mono-phone model
Mel frequency cepstral coefficients
MFCC
Opis:
Speech recognition system extract the textual data from the speech signal. The research in speech recognition domain is challenging due to the large variabilities involved with the speech signal. Variety of signal processing and machine learning techniques have been explored to achieve better recognition accuracy. Speech is highly non-stationary in nature and therefore analysis is carried out by considering short time-domain window or frame. In the speech recognition task, cepstral (Mel frequency cepstral coefficients (MFCC)) features are commonly used and are extracted for short time-frame. The effectiveness of features depend upon duration of the time-window chosen. The present study is aimed at investigation of optimal time-window duration for extraction of cepstral features in the context of speech recognition task. A speaker independent speech recognition system for the Kannada language has been considered for the analysis. In the current work, speech utterances of Kannada news corpus recorded from different speakers have been used to create speech database. The hidden Markov tool kit (HTK) has been used to implement the speech recognition system. The MFCC along with their first and second derivative coefficients are considered as feature vectors. Pronunciation dictionary required for the study has been built manually for mono-phone system. Experiments have been carried out and results have been analyzed for different time-window lengths. The overlapping Hamming window has been considered in this study. The best average word recognition accuracy of 61.58% has been obtained for a window length of 110 msec duration. This recognition accuracy is comparable with the similar work found in literature. The experiments have shown that best word recognition performance can be achieved by tuning the window length to its optimum value.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 161--166
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Instantaneous Frequency Estimation of Multi-Component Non- Stationary Signals using Fourier Bessel series and Time-Varying Auto Regressive Model
Autorzy:
Ravi Shankar Reddy, G.
Rao, R.
Powiązania:
https://bibliotekanauki.pl/articles/226382.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
basis functions
Fourier-Bessel expansion
instantaneous frequency
multi component non stationary signal
Time-varying Auto Regressive model
Opis:
In this paper, we propose a novel technique for Instantaneous frequency (IF) estimation of multi component non stationary signals using Fourier Bessel Series and Time-Varying Auto Regressive (FB-TVAR) model. In the proposed technique, the Fourier-Bessel (FB) expansion decomposes the multicomponent non stationary signal into a number of monocomponent signals and TVAR model is used to model each monocomponent signal. In TVAR modeling approach the time varying parameters are expanded as a linear combination of basis functions. In this paper, the TVAR parameters are expanded by a discrete cosine basis functions. The maximum likelihood estimation algorithm for model order selection in TVAR models is also discussed. The Instantaneous frequency (IF) is extracted from the time-varying parameters by calculating the angles of the estimation error filter polynomial roots. The estimation of the TVAR parameters of a multicomponent signal requires the inversion of a large covariance matrix, while the projected technique (FB-TVAR) requires the inversion of a number of comparatively small covariance matrices with better numerical stability properties. Simulation results are presented for three component discrete Amplitude and Frequency modulated (AM-FM)signal.
Źródło:
International Journal of Electronics and Telecommunications; 2015, 61, 4; 365-376
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies