Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ground sampling" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Nonuniform Spatial Sampling in a Ground-Based Noise SAR
Autorzy:
Maślikowski, Ł.
Misiurewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/226510.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonuniform sampling
noise radar
synthetic aperture
radar (SAR)
compressive sampling
Opis:
The paper presents an idea of nonuniform spatial sampling applied to a noise synthetic aperture radar. In certain cases it is desirable to limit the number of spatial (alongtrack) domain samples acquired in a SAR radar because of external constraints on sampling frequency or on the overall number of samples – e.g. in order to economy on time or power consumed. Lowering number of samples taken may, however, lead to spatial aliasing and incorrect reconstruction of the image. Nonuniform sampling allows to reduce the aliasing effect and reconstruct the image better. This technique can be applied with standard reconstruction methods, but it works best together with Compressive Sensing reconstruction algorithms. The idea will be verified with an experimental noise SAR built at ISE PW.
Źródło:
International Journal of Electronics and Telecommunications; 2011, 57, 1; 71-75
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Power-Ground Plane Impedance Modeling Using Deep Neural Networks and an Adaptive Sampling Process
Autorzy:
Goay, Chan Hong
Cheong, Zheng Quan
Low, Chen En
Ahmad, Nur Syazreen
Goh, Patrick
Powiązania:
https://bibliotekanauki.pl/articles/2200709.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
adaptive sampling
deep neural networks
deep learning
power-ground plane
Z-parameters
Opis:
This paper proposes a deep neural network (DNN) based method for the purpose of power-ground plane impedance modeling. A composite DNN model, which is a combination of two DNNs is used to predict the Z-parameters of power ground planes from their design parameters. The first DNN predicts the normalized Z-parameters whereas the second DNN predicts the original maximum and minimum values of the nonnormalized Z-parameters. This allows the method to retain a high accuracy when predicting responses that have large variations across designs, as is the case with the Z-parameters of the power-ground planes. We use the adaptive sampling algorithm to generate the training and validation samples for the DNNs. The adaptive sampling algorithm starts with only a few samples, then slowly generates more samples in the non-linear regions within the design parameters space. The level of non-linearity of the regions is determined by a surrogate model which is also trained using the generated samples as well. If the surrogate model has poor prediction accuracy in a region, then the adaptive sampling algorithm will generate more samples in that region. A shallow neural network is used as the surrogate model for non-linearity determination of the regions since it is faster to train and update. Once all the samples have been generated, they will be used to train and validate the composite DNN models. Finally, we present two examples, a square-shaped power ground plane and a squareshaped power ground plane with a hollow square at the center to demonstrate the robustness of the DNN composite models.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 4; 793--798
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies