Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "theory of fractions" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On the Farey sequence and its augmentation for applications to image analysis
Autorzy:
Pratihar, S.
Bhowmick, P.
Powiązania:
https://bibliotekanauki.pl/articles/329997.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Farey sequence
Farey table
fraction rank
theory of fractions
image analysis
sekwencja Fareya
rząd frakcji
analiza obrazu
Opis:
We introduce a novel concept of the augmented Farey table (AFT). Its purpose is to store the ranks of fractions of a Farey sequence in an efficient manner so as to return the rank of any query fraction in constant time. As a result, computations on the digital plane can be crafted down to simple integer operations; for example, the tasks like determining the extent of collinearity of integer points or of parallelism of straight lines—often required to solve many image-analytic problems—can be made fast and efficient through an appropriate AFT-based tool. We derive certain interesting characterizations of an AFT for its efficient generation. We also show how, for a fraction not present in a Farey sequence, the rank of the nearest fraction in that sequence can efficiently be obtained by the regula falsi method from the AFT concerned. To assert its merit, we show its use in two applications—one in polygonal approximation of digital curves and the other in skew correction of engineering drawings in document images. Experimental results indicate the potential of the AFT in such image-analytic applications.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 3; 637-658
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polynomial systems theory applied to the analysis and design of multidimensional systems
Autorzy:
Hatonen, J.
Ylinen, R.
Powiązania:
https://bibliotekanauki.pl/articles/908252.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
nD systems
module of fractions
partial differential equations
polynomial systems theory
Opis:
The use of a principal ideal domain structure for the analysis and design of multidimensional systems is discussed. As a first step it is shown that a lattice structure can be introduced for IO-relations generated by polynomial matrices in a signal space X (an Abelian group). It is assumed that the matrices take values in a polynomial ring F[p] where F is a field such that F[p] is a commutative subring of the ring of endomorphisms of X. After that it is analysed when a given F[p] acting on X can be extended to its field of fractions F(p). The conditions on the pair (F[p],X) are quite restrictive, i.e. each non-zero a(p)\in F[p] has to be an automorphism on X before the extension is possible. However, when this condition is met, say for operators { p1,p2,..., pn-1}, a polynomial ring F[p1,p2,...,pn] acting on X can be extended to F(p1,p2,..., pn-1)[pn], resulting in a principal ideal domain structure. Hence in this case all the rigorous principles of `ordinary' polynomial systems theory for the analysis and design of systems is applicable. As an example, both an observer for estimating non-measurable outputs and a stabilizing controller for a distributed parameter system are designed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 1; 15-27
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies