- Tytuł:
- Efficient nonlinear predictive control based on structured neural models
- Autorzy:
- Ławryńczuk, M.
- Powiązania:
- https://bibliotekanauki.pl/articles/907652.pdf
- Data publikacji:
- 2009
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
sterowanie procesami
sterowanie predykcyjne
sieć neuronowa
optymalizacja
linearyzacja
process control
model predictive control
neuron network
optimisation
linearisation - Opis:
- This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the case of noise and underparameterisation. Structured models have much better long-range prediction accuracy than the corresponding classical Nonlinear Auto Regressive with eXternal input (NARX) models. The described suboptimal MPC algorithm needs solving on-line only a quadratic programming problem. Nevertheless, it gives closed-loop control performance similar to that obtained in fully-fledged nonlinear MPC, which hinges on online nonconvex optimisation. In order to demonstrate the advantages of structured models as well as the accuracy of the suboptimal MPC algorithm, a polymerisation reactor is studied.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2009, 19, 2; 233-246
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki