Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "predator-prey system" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Dynamic stability and spatial heterogeneity in the individual-based modelling of a Lotka-Volterra gas
Autorzy:
Waniewski, J.
Jędruch, W.
Żołek, N. S.
Powiązania:
https://bibliotekanauki.pl/articles/907374.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
równanie Lotka-Volterra
entropia
współczynnik korelacji
predator-prey system
entropy
correlation coefficient
Opis:
Computer simulation of a few thousands of particles moving (approximately) according to the energy and momentum conservation laws on a tessellation of 800 x 800 squares in discrete time steps and interacting according to the predator-prey scheme is analyzed. The population dynamics are described by the basic Lotka-Volterra interactions (multiplication of preys, predation and multiplication of predators, death of predators), but the spatial effects result in differences between the system evolution and the mathematical description by the Lotka-Volterra equations. The spatial patterns were evaluated using entropy and a cross correlation coefficient for the spatial distribution of both populations. In some simulations the system oscillated with variable amplitude but rather stable period, but the particle distribution departed from the (quasi) homogeneous state and did not return to it. The distribution entropy oscillated in the same rhythm as the population, but its value was smaller than in the initial homogeneous state. The cross correlation coefficient oscillated between positive and negative values. Its average value depended on the space scale applied for its evaluation with the negative values on the small scale (separation of preys from predators) and the positive values on the large scale (aggregation of both populations). The stability of such oscillation patterns was based on a balance of the population parameters and particle mobility. The increased mobility (particle mixing) resulted in unstable oscillations with high amplitude, sustained homogeneity of the particle distribution, and final extinction of one or both populations.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 2; 139-147
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial Heterogeneity and Local Oscillation Phase Drifts Individual-Based Simulations of a Prey-Predator System
Autorzy:
Waniewski, J.
Jędruch, W.
Powiązania:
https://bibliotekanauki.pl/articles/929763.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
estymacja parametryczna
różnorodność przestrzenna
prey-predator system
individual-based simulations
spatial heterogeneity
oscillation phase drift
parameter estimation
Opis:
Individual-based simulations of a simple prey-predator system of Lotka-Volterra type were carried out on a tessellation of identical squares with discrete time steps. The particles representing individuals moved freely along (roughly) straight lines with constant (on the average) velocity, and changed their movement during a collision with another particle. Individuals were of two types: preys (with free exponential population growth) and predators (with exponential population decrease in the absence of a prey, they attack with probability one and are characterized by zero handling and gestationtimes). Therefore the system might be also interpreted as a chemical reactionin a gas. For this simple system, a spontaneous generation of complex spatio-temporal pattern was observed with wavy spatial patterns and tendency for preys to form clusters surrounded by predators if the population density was high. The oscillations of the system were investigated at different spatial scales, and the phase lag between the oscillations in different local observation windows was demonstrated. The parameters of the classical Lotka-Volterra equations were estimated and the impact of the migration and the oscillation phase drift on the parameter values was discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 1; 175-192
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies