Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image recognition" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Impact of low resolution on image recognition with deep neural networks: An experimental study
Autorzy:
Koziarski, M.
Cyganek, B.
Powiązania:
https://bibliotekanauki.pl/articles/330321.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
image recognition
deep neural network
convolutional neural network
low resolution
super resolution
rozpoznawanie obrazu
sieć neuronowa głęboka
sieć neuronowa konwolucyjna
niska rozdzielczość
nadrozdzielczość
Opis:
Due to the advances made in recent years, methods based on deep neural networks have been able to achieve a state-of-the-art performance in various computer vision problems. In some tasks, such as image recognition, neural-based approaches have even been able to surpass human performance. However, the benchmarks on which neural networks achieve these impressive results usually consist of fairly high quality data. On the other hand, in practical applications we are often faced with images of low quality, affected by factors such as low resolution, presence of noise or a small dynamic range. It is unclear how resilient deep neural networks are to the presence of such factors. In this paper we experimentally evaluate the impact of low resolution on the classification accuracy of several notable neural architectures of recent years. Furthermore, we examine the possibility of improving neural networks’ performance in the task of low resolution image recognition by applying super-resolution prior to classification. The results of our experiments indicate that contemporary neural architectures remain significantly affected by low image resolution. By applying super-resolution prior to classification we were able to alleviate this issue to a large extent as long as the resolution of the images did not decrease too severely. However, in the case of very low resolution images the classification accuracy remained considerably affected.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 735-744
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bivariate Hahn moments for image reconstruction
Autorzy:
Wu, H.
Yan, S.
Powiązania:
https://bibliotekanauki.pl/articles/331058.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bivariate Hahn moments
bivariate Hahn polynomials
image reconstruction
pattern recognition
odtworzenie obrazu
rozpoznawanie obrazu
Opis:
This paper presents a new set of bivariate discrete orthogonal moments which are based on bivariate Hahn polynomials with non-separable basis. The polynomials are scaled to ensure numerical stability. Their computational aspects are discussed in detail. The principle of parameter selection is established by analyzing several plots of polynomials with different kinds of parameters. Appropriate parameters of binary images and a grayscale image are obtained through experimental results. The performance of the proposed moments in describing images is investigated through several image reconstruction experiments, including noisy and noise-free conditions. Comparisons with existing discrete orthogonal moments are also presented. The experimental results show that the proposed moments outperform slightly separable Hahn moments for higher orders.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 2; 417-428
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Circular object detection using a modified Hough transform
Autorzy:
Smereka, M.
Dulęba, I.
Powiązania:
https://bibliotekanauki.pl/articles/908053.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
transformata Hough'a
obrazowanie medyczne
przetwarzanie obrazu
image processing
circular shape recognition
Hough transform
medical imaging
Opis:
A practical modification of the Hough transform is proposed that improves the detection of low-contrast circular objects. The original circular Hough transform and its numerous modifications are discussed and compared in order to improve both the efficiency and computational complexity of the algorithm. Medical images are selected to verify the algorithm. In particular, the algorithm is applied to localize cell nuclei of cytological smears visualized using a phase contrast microscope.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 1; 85-91
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Utilizing relevant RGB-D data to help recognize RGB images in the target domain
Autorzy:
Gao, Depeng
Liu, Jiafeng
Wu, Rui
Cheng, Dansong
Fan, Xiaopeng
Tang, Xianglong
Powiązania:
https://bibliotekanauki.pl/articles/329725.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
object recognition
RGB-D image
transfer learning
privileged information
rozpoznawanie obiektu
obraz RGB-D
uczenie maszynowe
informacja poufna
Opis:
With the advent of 3D cameras, getting depth information along with RGB images has been facilitated, which is helpful in various computer vision tasks. However, there are two challenges in using these RGB-D images to help recognize RGB images captured by conventional cameras: one is that the depth images are missing at the testing stage, the other is that the training and test data are drawn from different distributions as they are captured using different equipment. To jointly address the two challenges, we propose an asymmetrical transfer learning framework, wherein three classifiers are trained using the RGB and depth images in the source domain and RGB images in the target domain with a structural risk minimization criterion and regularization theory. A cross-modality co-regularizer is used to restrict the two-source classifier in a consistent manner to increase accuracy. Moreover, an L2,1 norm cross-domain co-regularizer is used to magnify significant visual features and inhibit insignificant ones in the weight vectors of the two RGB classifiers. Thus, using the cross-modality and cross-domain co-regularizer, the knowledge of RGB-D images in the source domain is transferred to the target domain to improve the target classifier. The results of the experiment show that the proposed method is one of the most effective ones.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 611-621
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Texture analysis in perfusion images of prostate cancer-A case study
Autorzy:
Śmietański, J.
Tadeusiewicz, R.
Łuczyńska, E.
Powiązania:
https://bibliotekanauki.pl/articles/907770.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
nowotwór prostaty
tomografia komputerowa
analiza obrazu medycznego
rozpoznawanie obrazów
prostate cancer
perfusion computed tomography
medical image analysis
pattem recognition
Opis:
The analysis of prostate images is one of the most complex tasks in medical images interpretation. It is sometimes very difficult to detect early prostate cancer using currently available diagnostic methods. But the examination based on perfusion computed tomography (p-CT) may avoid such problems even in particularly difficult cases. However, the lack of computational methods useful in the interpretation of perfusion prostate images makes it unreliable because the diagnosis depends mainly on the doctor's individual opinion and experience. In this paper some methods of automatic analysis of prostate perfusion tomographic images are presented and discussed. Some of the presented methods are adopted from papers of other researchers, and some are elaborated by the authors. This presentation of the method and algorithms is important, but it is not the master scope of the paper. The main purpose of this study is computational (deterministic and independent) verification of the usefulness of the p-CT technique in a specific case. It shows that it is possible to find computationally attainable properties of p-CT images which allow pointing out the cancerous lesion and can be used in computer aided medical diagnosis.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 149-156
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Picture Languages in Automatic Radiological Palm Interpretation
Autorzy:
Tadeusiewicz, R.
Ogiela, M. R.
Powiązania:
https://bibliotekanauki.pl/articles/908539.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
komputerowe wspomaganie diagnozy
diagnostyka choroby
choroba dłoni
syntaktyczne rozpoznawanie obrazu
rozumienie obrazu
medyczna analiza obrazu
syntactic pattern recognition
image understanding
medical image analysis
computer-aided diagnosis
palm disease diagnostics
Opis:
The paper presents a new technique for cognitive analysis and recognition of pathological wrist bone lesions. This method uses AI techniques and mathematical linguistics allowing us to automatically evaluate the structure of the said bones, based on palm radiological images. Possibilities of computer interpretation of selected images, based on the methodology of automatic medical image understanding, as introduced by the authors, were created owing to the introduction of an original relational description of individual palm bones. This description was built with the use of graph linguistic formalisms already applied in artificial intelligence. The research described in this paper demonstrates that for the needs of palm bone diagnostics, specialist linguistic tools such as expansive graph grammars and EDT-label graphs are particularly well suited. Defining a graph image language adjusted to the specific features of the scientific problem described here permitted a semantic description of correct palm bone structures. It also enabled the interpretation of images showing some in-born lesions, such as additional bones or acquired lesions such as their incorrect junctions resulting from injuries and synostoses.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 2; 305-312
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An accurate fingerprint reference point determination method based on curvature estimation of separated ridges
Autorzy:
Doroz, R.
Wrobel, K.
Porwik, P.
Powiązania:
https://bibliotekanauki.pl/articles/331403.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
biometrics
image processing
fingerprint recognition
Kolmogorov–Smirnov statistical test
reference point
biometria
przetwarzanie obrazu
rozpoznawanie linii papilarnych
test statystyczny
punkt odniesienia
Opis:
This paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 1; 209-225
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Projection-based text line segmentation with a variable threshold
Autorzy:
Ptak, R.
Żygadło, B.
Unold, O.
Powiązania:
https://bibliotekanauki.pl/articles/329884.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
document image processing
handwritten text
text line segmentation
projection profile
offline cursive script recognition
przetwarzanie obrazu dokumentu
tekst odręczny
segmentacja linii tekstu
profil projekcyjny
Opis:
Document image segmentation into text lines is one of the stages in unconstrained handwritten document recognition. This paper presents a new algorithm for text line separation in handwriting. The developed algorithm is based on a method using the projection profile. It employs thresholding, but the threshold value is variable. This permits determination of low or overlapping peaks of the graph. The proposed technique is shown to improve the recognition rate relative to traditional methods. The algorithm is robust in text line detection with respect to different text line lengths.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 1; 195-206
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Line segmentation of handwritten text using histograms and tensor voting
Autorzy:
Babczyński, Tomasz
Ptak, Roman
Powiązania:
https://bibliotekanauki.pl/articles/330796.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
document image processing
handwritten text
text line segmentation
projection profile
text string
offline cursive script recognition
ICDAR 2009 competition
przetwarzanie obrazu dokumentu
tekst odręczny
segmentacja linii tekstu
profil projekcyjny
ciąg tekstowy
Opis:
There are a large number of historical documents in libraries and other archives throughout the world. Most of them are written by hand. In many cases they exist in only one specimen and are hard to reach. Digitization of such artifacts can make them available to the community. But even digitized, they remain unsearchable, and an important task is to draw the contents in the computer readable form. One of the first steps in this direction is to recognize where the lines of the text are. Computational intelligence algorithms can be used to solve this problem. In the present paper, two groups of algorithms, namely, projection-based and tensor voting-based, are compared. The performance is evaluated on a data set and with the procedure proposed by the organizers of the ICDAR 2009 competition.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 3; 585-596
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies