Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "graph Laplacian" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A generalization of the graph Laplacian with application to a distributed consensus algorithm
Autorzy:
Zhai, G.
Powiązania:
https://bibliotekanauki.pl/articles/331278.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
graph Laplacian
generalized graph Laplacian
adjacency weights
distributed consensus algorithm
cooperative control
Opis:
In order to describe the interconnection among agents with multi-dimensional states, we generalize the notion of a graph Laplacian by extending the adjacency weights (or weighted interconnection coefficients) from scalars to matrices. More precisely, we use positive definite matrices to denote full multi-dimensional interconnections, while using nonnegative definite matrices to denote partial multi-dimensional interconnections. We prove that the generalized graph Laplacian inherits the spectral properties of the graph Laplacian. As an application, we use the generalized graph Laplacian to establish a distributed consensus algorithm for agents described by multi-dimensional integrators.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 2; 353-360
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A matrix inequality based design method for consensus problems in multi-agent systems
Autorzy:
Zhai, G.
Okuno, S.
Imae, J.
Kobayashi, T.
Powiązania:
https://bibliotekanauki.pl/articles/930012.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system wieloagentowy
konsensus
sterowanie zdecentralizowane
nierówność macierzy
LMI
multi-agent systems
consensus
decentralized control
graph Laplacian
matrix inequality
Opis:
In this paper, we study a consensus problem in multi-agent systems, where the entire system is decentralized in the sense that each agent can only obtain information (states or outputs) from its neighbor agents. The existing design methods found in the literature are mostly based on a graph Laplacian of the graph which describes the interconnection structure among the agents, and such methods cannot deal with complicated control specification. For this purpose, we propose to reduce the consensus problem at hand to the solving of a strict matrix inequality with respect to a Lyapunov matrix and a controller gain matrix, and we propose two algorithms for solving the matrix inequality. It turns out that this method includes the existing Laplacian based method as a special case and can deal with various additional control requirements such as the convergence rate and actuator constraints.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 4; 639-646
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Constrained spectral clustering via multi-layer graph embeddings on a Grassmann manifold
Autorzy:
Trokicić, Aleksandar
Todorović, Branimir
Powiązania:
https://bibliotekanauki.pl/articles/329780.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
spectral clustering
constrained clustering
multilayer graph
Grassmann manifold
Nyström method
Laplacian matrix
grupowanie widmowe
graf wielowarstwowy
metoda Nyströma
macierz Laplaciana
Opis:
We present two algorithms in which constrained spectral clustering is implemented as unconstrained spectral clustering on a multi-layer graph where constraints are represented as graph layers. By using the Nystrom approximation in one of the algorithms, we obtain time and memory complexities which are linear in the number of data points regardless of the number of constraints. Our algorithms achieve superior or comparative accuracy on real world data sets, compared with the existing state-of-the-art solutions. However, the complexity of these algorithms is squared with the number of vertices, while our technique, based on the Nyström approximation method, has linear time complexity. The proposed algorithms efficiently use both soft and hard constraints since the time complexity of the algorithms does not depend on the size of the set of constraints.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 1; 125-137
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies