Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feature reduction" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Finding robust transfer features for unsupervised domain adaptation
Autorzy:
Gao, Depeng
Wu, Rui
Liu, Jiafeng
Fan, Xiaopeng
Tang, Xianglong
Powiązania:
https://bibliotekanauki.pl/articles/331356.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
unsupervised domain adaptation
feature reduction
generalized eigenvalue decomposition
object recognition
adaptacja domeny
redukcja cech
rozkład wartości własnych
rozpoznawanie obiektu
Opis:
An insufficient number or lack of training samples is a bottleneck in traditional machine learning and object recognition. Recently, unsupervised domain adaptation has been proposed and then widely applied for cross-domain object recognition, which can utilize the labeled samples from a source domain to improve the classification performance in a target domain where no labeled sample is available. The two domains have the same feature and label spaces but different distributions. Most existing approaches aim to learn new representations of samples in source and target domains by reducing the distribution discrepancy between domains while maximizing the covariance of all samples. However, they ignore subspace discrimination, which is essential for classification. Recently, some approaches have incorporated discriminative information of source samples, but the learned space tends to be overfitted on these samples, because they do not consider the structure information of target samples. Therefore, we propose a feature reduction approach to learn robust transfer features for reducing the distribution discrepancy between domains and preserving discriminative information of the source domain and the local structure of the target domain. Experimental results on several well-known cross-domain datasets show that the proposed method outperforms state-of-the-art techniques in most cases.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 1; 99-112
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm
Autorzy:
Kavi Priya, Santhosam
Pon Karthika, Kasirajan
Powiązania:
https://bibliotekanauki.pl/articles/2201021.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
depression detection
text classification
dimensionality reduction
hybrid feature selection
wykrywanie depresji
klasyfikacja tekstu
redukcja wymiarowości
wybór funkcji
Opis:
Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 1; 117--131
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization on the complementation procedure towards efficient implementation of the index generation function
Autorzy:
Borowik, G.
Powiązania:
https://bibliotekanauki.pl/articles/330597.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data reduction
feature selection
indiscernibility matrix
logic synthesis
index generation function
redukcja danych
selekcja cech
synteza logiczna
funkcja generowania indeksów
Opis:
In the era of big data, solutions are desired that would be capable of efficient data reduction. This paper presents a summary of research on an algorithm for complementation of a Boolean function which is fundamental for logic synthesis and data mining. Successively, the existing problems and their proposed solutions are examined, including the analysis of current implementations of the algorithm. Then, methods to speed up the computation process and efficient parallel implementation of the algorithm are shown; they include optimization of data representation, recursive decomposition, merging, and removal of redundant data. Besides the discussion of computational complexity, the paper compares the processing times of the proposed solution with those for the well-known analysis and data mining systems. Although the presented idea is focused on searching for all possible solutions, it can be restricted to finding just those of the smallest size. Both approaches are of great application potential, including proving mathematical theorems, logic synthesis, especially index generation functions, or data processing and mining such as feature selection, data discretization, rule generation, etc. The problem considered is NP-hard, and it is easy to point to examples that are not solvable within the expected amount of time. However, the solution allows the barrier of computations to be moved one step further. For example, the unique algorithm can calculate, as the only one at the moment, all minimal sets of features for few standard benchmarks. Unlike many existing methods, the algorithm additionally works with undetermined values. The result of this research is an easily extendable experimental software that is the fastest among the tested solutions and the data mining systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 4; 803-815
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies