Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "dimension reduction" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Dimension reduction for objects composed of vector sets
Autorzy:
Szemenyei, M.
Vajda, F.
Powiązania:
https://bibliotekanauki.pl/articles/330024.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
dimension reduction
discriminant analysis
object recognition
registration
redukcja wymiaru
analiza dyskryminacyjna
rozpoznawanie obiektu
Opis:
Dimension reduction and feature selection are fundamental tools for machine learning and data mining. Most existing methods, however, assume that objects are represented by a single vectorial descriptor. In reality, some description methods assign unordered sets or graphs of vectors to a single object, where each vector is assumed to have the same number of dimensions, but is drawn from a different probability distribution. Moreover, some applications (such as pose estimation) may require the recognition of individual vectors (nodes) of an object. In such cases it is essential that the nodes within a single object remain distinguishable after dimension reduction. In this paper we propose new discriminant analysis methods that are able to satisfy two criteria at the same time: separating between classes and between the nodes of an object instance. We analyze and evaluate our methods on several different synthetic and real-world datasets.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 1; 169-180
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An algorithm for reducing the dimension and size of a sample for data exploration procedures
Autorzy:
Kulczycki, P.
Łukasik, S.
Powiązania:
https://bibliotekanauki.pl/articles/330110.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
dimension reduction
sample size reduction
linear transformation
simulated annealing
data mining
redukcja wymiaru
transformacja liniowa
wyżarzanie symulowane
eksploracja danych
Opis:
The paper deals with the issue of reducing the dimension and size of a data set (random sample) for exploratory data analysis procedures. The concept of the algorithm investigated here is based on linear transformation to a space of a smaller dimension, while retaining as much as possible the same distances between particular elements. Elements of the transformation matrix are computed using the metaheuristics of parallel fast simulated annealing. Moreover, elimination of or a decrease in importance is performed on those data set elements which have undergone a significant change in location in relation to the others. The presented method can have universal application in a wide range of data exploration problems, offering flexible customization, possibility of use in a dynamic data environment, and comparable or better performance with regards to the principal component analysis. Its positive features were verified in detail for the domain’s fundamental tasks of clustering, classification and detection of atypical elements (outliers).
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 133-149
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of correlation based dimension reduction methods
Autorzy:
Shin, Y. J.
Park, C. H.
Powiązania:
https://bibliotekanauki.pl/articles/907508.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza korelacyjna
redukcja wymiaru
liniowa analiza dyskryminacji
canonical correlation analysis
dimension reduction
discriminative canonical correlation analysis
linear discriminant analysis
Opis:
Dimension reduction is an important topic in data mining and machine learning. Especially dimension reduction combined with feature fusion is an effective preprocessing step when the data are described by multiple feature sets. Canonical Correlation Analysis (CCA) and Discriminative Canonical Correlation Analysis (DCCA) are feature fusion methods based on correlation. However, they are different in that DCCA is a supervised method utilizing class label information, while CCA is an unsupervised method. It has been shown that the classification performance of DCCA is superior to that of CCA due to the discriminative power using class label information. On the other hand, Linear Discriminant Analysis (LDA) is a supervised dimension reduction method and it is known as a special case of CCA. In this paper, we analyze the relationship between DCCA and LDA, showing that the projective directions by DCCA are equal to the ones obtained from LDA with respect to an orthogonal transformation. Using the relation with LDA, we propose a new method that can enhance the performance of DCCA. The experimental results show that the proposed method exhibits better classification performance than the original DCCA.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 3; 549-558
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Random projection RBF nets for multidimensional density estimation
Autorzy:
Skubalska-Rafajłowicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/929907.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
radialne funkcje bazowe
estymacja
wielowymiarowa gęstość prawdopodobieństwa
redukcja wymiaru
rzutowanie losowe
detekcja nowości
radial basis functions
multivariate density estimation
dimension reduction
normal random projection
novelty detection
Opis:
The dimensionality and the amount of data that need to be processed when intensive data streams are observed grow rapidly together with the development of sensors arrays, CCD and CMOS cameras and other devices. The aim of this paper is to propose an approach to dimensionality reduction as a first stage of training RBF nets. As a vehicle for presenting the ideas, the problem of estimating multivariate probability densities is chosen. The linear projection method is briefly surveyed. Using random projections as the first (additional) layer, we are able to reduce the dimensionality of input data. Bounds on the accuracy of RBF nets equipped with a random projection layer in comparison to RBF nets without dimensionality reduction are established. Finally, the results of simulations concerning multidimensional density estimation are briefly reported.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 4; 455-464
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One-Dimensional Kohonens Lvq Nets for Multidimensional Patterns Recognition
Autorzy:
Skubalska-Rafajłowicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/911149.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
krzywa przestrzenna
rozpoznawanie obrazów
space-filling curve
pattern recognition
learning vector quantization
reduction of dimension
Opis:
A new neural network based pattern recognition algorithm is proposed. The method consists in preprocessing the multidimensional data, using a space-filling curve based transformation into the unit interval, and employing Kohonen's vector quantization algorithms (of SOM and LVQ types) in one dimension. The space-filling based transformation preserves the theoretical Bayes risk. Experiments show that such an approach can produce good or even better error rates than the classical LVQ performed in a multidimensional space.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 767-778
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies