Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Supervised classification" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Basic quantum circuits for classification and approximation tasks
Autorzy:
Wiśniewska, Joanna
Sawerwain, Marek
Obuchowicz, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1838166.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
quantum circuits
data classification
supervised learning
qubits
qudits
układ kwantowy
klasyfikacja danych
uczenie nadzorowane
kubit
Opis:
We discuss a quantum circuit construction designed for classification. The circuit is built of regularly placed elementary quantum gates, which implies the simplicity of the presented solution. The realization of the classification task is possible after the procedure of supervised learning which constitutes parameter optimization of Pauli gates. The process of learning can be performed by a physical quantum machine but also by simulation of quantum computation on a classical computer. The parameters of Pauli gates are selected by calculating changes in the gradient for different sets of these parameters. The proposed solution was successfully tested in binary classification and estimation of basic non-linear function values, e.g., the sine, the cosine, and the tangent. In both the cases, the circuit construction uses one or more identical unitary operations, and contains only two qubits and three quantum gates. This simplicity is a great advantage because it enables the practical implementation on quantum machines easily accessible in the nearest future.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 4; 733-744
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A strategy learning model for autonomous agents based on classification
Autorzy:
Śnieżyński, B.
Powiązania:
https://bibliotekanauki.pl/articles/330672.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
autonomous agents
strategy learning
supervised learning
classification
reinforcement learning
czynnik niezależny
uczenie nadzorowane
uczenie ze wzmocnieniem
Opis:
In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer–pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 471-482
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-label classification using error correcting output codes
Autorzy:
Kajdanowicz, T.
Kazienko, P.
Powiązania:
https://bibliotekanauki.pl/articles/331286.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
maszyna ucząca się
uczenie nadzorowane
metoda agregacji
struktura ramowa
machine learning
supervised learning
multilabel classification
error correcting output codes
ECOC
ensemble methods
binary relevance
framework
Opis:
A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the multi-label classification problem. The experimental results revealed that (i) the Bode-Chaudhuri-Hocquenghem (BCH) code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not suitable for datasets with larger label sets.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 829-840
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies