Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Preprocessing" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
CCR: A combined cleaning and resampling algorithm for imbalanced data classification
Autorzy:
Koziarski, M.
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/329869.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
machine learning
classification algorithms
imbalanced data
preprocessing
oversampling
uczenie maszynowe
algorytm klasyfikacji
dane niezrównoważone
wstępne przetwarzanie danych
Opis:
Imbalanced data classification is one of the most widespread challenges in contemporary pattern recognition. Varying levels of imbalance may be observed in most real datasets, affecting the performance of classification algorithms. Particularly, high levels of imbalance make serious difficulties, often requiring the use of specially designed methods. In such cases the most important issue is often to properly detect minority examples, but at the same time the performance on the majority class cannot be neglected. In this paper we describe a novel resampling technique focused on proper detection of minority examples in a two-class imbalanced data task. The proposed method combines cleaning the decision border around minority objects with guided synthetic oversampling. Results of the conducted experimental study indicate that the proposed algorithm usually outperforms the conventional oversampling approaches, especially when the detection of minority examples is considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 4; 727-736
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A rainfall forecasting method using machine learning models and its application to the Fukuoka city case
Autorzy:
Sumi, S. M.
Zaman, M. F.
Hirose, H.
Powiązania:
https://bibliotekanauki.pl/articles/331290.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
maszyna ucząca się
metoda wielomodelowa
przetwarzanie wstępne
rainfall forecasting
machine learning
multi model method
preprocessing
model ranking
Opis:
In the present article, an attempt is made to derive optimal data-driven machine learning methods for forecasting an average daily and monthly rainfall of the Fukuoka city in Japan. This comparative study is conducted concentrating on three aspects: modelling inputs, modelling methods and pre-processing techniques. A comparison between linear correlation analysis and average mutual information is made to find an optimal input technique. For the modelling of the rainfall, a novel hybrid multi-model method is proposed and compared with its constituent models. The models include the artificial neural network, multivariate adaptive regression splines, the k-nearest neighbour, and radial basis support vector regression. Each of these methods is applied to model the daily and monthly rainfall, coupled with a pre-processing technique including moving average and principal component analysis. In the first stage of the hybrid method, sub-models from each of the above methods are constructed with different parameter settings. In the second stage, the sub-models are ranked with a variable selection technique and the higher ranked models are selected based on the leave-one-out cross-validation error. The forecasting of the hybrid model is performed by the weighted combination of the finally selected models.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 841-854
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies