Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "PRZEDSTAWIENIE" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Rough Relation Properties
Autorzy:
Nicoletti, M. C.
Uchoa, J. Q.
Baptistini, M. T. Z.
Powiązania:
https://bibliotekanauki.pl/articles/908367.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
teoria mnogości
przedstawienie wiedzy
rough set theory
rough relation
knowledge representation
Opis:
Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. This paper rewrites some properties of rough relations found in the literature, proving their validity.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 3; 621-635
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Networks in the Framework of Granular Computing
Autorzy:
Pedrycz, W.
Powiązania:
https://bibliotekanauki.pl/articles/911146.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
kodowanie
dekoder
sieć neuronowa
przedstawienie wiedzy
information granulation
pyramid architectures
encoding and decoding
neural networks
learning
knowledge representation
Opis:
The study is concerned with the fundamentals of granular computing and its application to neural networks. Granular computing, as the name itself stipulates, deals with representing information in the form of some aggregates (embracing a number of individual entitites) and their ensuing processing. We elaborate on the rationale behind granular computing. Next, a number of formal frameworks of information granulation are discussed including several alternatives such as fuzzy sets, interval analysis, rough sets, and probability. The notion of granularity itself is defined and quantified. A design agenda of granular computing is formulated and the key design problems are raised. A number of granular architectures are also discussed with an objective of dealineating the fundamental algorithmic and conceptual challenges. It is shown that the use of information granules of different size (granularity) lends itself to general pyramid architectures of information processing. The role of encoding and decoding mechanisms visible in this setting is also discussed in detail along with some particular solutions. Neural networks are primarily involved at the level of numeric optimization. Granularity of information introduces another dimension to the neurocomputing. We discuss the role of granular constructs in the design of neural networks and knowledge representation therein. The intent of this paper is to elaborate on the fundamentals and put the entire area in a certain perspective while not moving into specific algorithmic details.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 723-745
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes
Autorzy:
Mészáros, A.
Papp, J.
Telek, M.
Powiązania:
https://bibliotekanauki.pl/articles/329820.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fitting traffic traces
discrete phase type distribution
discrete Markov arrival process
canonical representation
rozkład fazowy
proces Markowa
przedstawienie kanoniczne
Opis:
Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov Arrival Processes (MAPs) promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing analysis. After introducing basics of these sets of stochastic models, the paper discusses the following subjects in detail: (i) PHs and MAPs have different representations. For efficient use of these models, sparse (defined by a minimal number of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to as canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs. (ii) The canonical representation allows a direct mapping between experimental moments and the stochastic models, referred to as moment matching. Explicit procedures are provided for this mapping. (iii) Moment matching is not always the best way to model the behavior of traffic traces. Model fitting based on appropriately chosen distance measures might result in better performing stochastic models. We also demonstrate the efficiency of fitting procedures with experimental results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 453-470
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relative Sets and Rough Sets
Autorzy:
Mousavi, A.
Jabedar-Maralani, P.
Powiązania:
https://bibliotekanauki.pl/articles/908368.pdf
Data publikacji:
2001
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
teoria mnogości
analiza danych
przedstawienie wiedzy
rough sets
set theory
data analysis
multi-valued logic
interval sets
knowledge representation
Opis:
In this paper, by defining a pair of classical sets as a relative set, an extension of the classical set algebra which is a counterpart of Belnap's four-valued logic is achieved. Every relative set partitions all objects into four distinct regions corresponding to four truth-values of Belnap's logic. Like truth-values of Belnap's logic, relative sets have two orderings; one is an order of inclusion and the other is an order of knowledge or information. By defining a rough set as a pair of definable sets, an integrated approach to relative sets and rough sets is obtained. With this definition, we are able to define an approximation of a rough set in an approximation space, and so we can obtain sequential approximations of a set, which is a good model of communication among agents.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2001, 11, 3; 637-653
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies