- Tytuł:
- Revisiting the optimal probability estimator from small samples for data mining
- Autorzy:
- Cestnik, Bojan
- Powiązania:
- https://bibliotekanauki.pl/articles/330350.pdf
- Data publikacji:
- 2019
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
probability estimation
small sample
minimal error
m-estimate
estymacja prawdopodobieństwa
mała próbka
błąd minimalny - Opis:
- Estimation of probabilities from empirical data samples has drawn close attention in the scientific community and has been identified as a crucial phase in many machine learning and knowledge discovery research projects and applications. In addition to trivial and straightforward estimation with relative frequency, more elaborated probability estimation methods from small samples were proposed and applied in practice (e.g., Laplace’s rule, the m-estimate). Piegat and Landowski (2012) proposed a novel probability estimation method from small samples Eph√2 that is optimal according to the mean absolute error of the estimation result. In this paper we show that, even though the articulation of Piegat’s formula seems different, it is in fact a special case of the m-estimate, where pa = 1/2 and m = √2. In the context of an experimental framework, we present an in-depth analysis of several probability estimation methods with respect to their mean absolute errors and demonstrate their potential advantages and disadvantages. We extend the analysis from single instance samples to samples with a moderate number of instances. We define small samples for the purpose of estimating probabilities as samples containing either less than four successes or less than four failures and justify the definition by analysing probability estimation errors on various sample sizes.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2019, 29, 4; 783-796
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki