Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "singular value decomposition" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
A fast neural network learning algorithm with approximate singular value decomposition
Autorzy:
Jankowski, Norbert
Linowiecki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/330870.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Moore–Penrose pseudoinverse
radial basis function network
extreme learning machine
kernel method
machine learning
singular value decomposition
deep extreme learning
principal component analysis
pseudoodwrotność Moore–Penrose
radialna funkcja bazowa
maszyna uczenia ekstremalnego
uczenie maszynowe
analiza składników głównych
Opis:
The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 581-594
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Properties of a Singular Value Decomposition Based Dynamical Model of Gene Expression Data
Autorzy:
Simek, K.
Powiązania:
https://bibliotekanauki.pl/articles/908156.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
multiple gene expression
singular value decomposition
dynamical model of gene expression data
Opis:
Recently, data on multiple gene expression at sequential time points were analyzed using the Singular Value Decomposition (SVD) as a means to capture dominant trends, called characteristic modes, followed by the fitting of a linear discrete-time dynamical system in which the expression values at a given time point are linear combinations of the values at a previous time point. We attempt to address several aspects of the method. To obtain the model, we formulate a nonlinear optimization problem and present how to solve it numerically using the standard MATLAB procedures. We use freely available data to test the approach. We discuss the possible consequences of data regularization, called sometimes "polishing", on the outcome of the analysis, especially when the model is to be used for prediction purposes. Then, we investigate the sensitivity of the method to missing measurements and its abilities to reconstruct the missing data. Summarizing, we point out that approximation of multiple gene expression data preceded by SVD provides some insight into the dynamics, but may also lead to unexpected difficulties, like overfitting problems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 3; 337-345
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An infinite horizon predictive control algorithm based on multivariable input-output models
Autorzy:
Ławryńczuk, M.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/907410.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie predykcyjne
horyzont nieskończony
programowanie kwadratowe
model predictive control
stability
infinite horizon
singular value decomposition
quadratic programming
Opis:
In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving on-line a quadratic programming problem. Additionally, it is shown how free and forced responses can be calculated without the necessity of solving a matrix Diophantine equation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 2; 167-180
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Latent semantic indexing for patent documents
Autorzy:
Moldovan, A.
Boţ, R. I.
Wanka, G.
Powiązania:
https://bibliotekanauki.pl/articles/908440.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
indeksowanie semantyczne
rozkład wartości szczególnych
model przestrzeni wektorowej
klasyfikacja patentowa
Latent Semantic Indexing (LSI)
singular value decomposition (SVD)
vector space model (VSM)
patent classification
Opis:
Since the huge database of patent documents is continuously increasing, the issue of classifying, updating and retrieving patent documents turned into an acute necessity. Therefore, we investigate the efficiency of applying Latent Semantic Indexing, an automatic indexing method of information retrieval, to some classes of patent documents from the United States Patent Classification System. We present some experiments that provide the optimal number of dimensions for the Latent Semantic Space and we compare the performance of Latent Semantic Indexing (LSI) to the Vector Space Model (VSM) technique applied to real life text documents, namely, patent documents. However, we do not strongly recommend the LSI as an improved alternative method to the VSM, since the results are not significantly better.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 551-560
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A 2D system approach to the design of a robust modified repetitive-control system with a dynamic output-feedback controller
Autorzy:
Zhou, L.
She, J.
Zhou, S.
Powiązania:
https://bibliotekanauki.pl/articles/330403.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
repetitive control
dynamic output feedback
two dimensional system
singular value decomposition
linear matrix inequality
sterowanie powtarzalne
sprzężenie zwrotne dynamiczne
system dwuwymiarowy
liniowa nierówność macierzowa
Opis:
This paper is concerned with the problem of designing a robust modified repetitive-control system with a dynamic output feedback controller for a class of strictly proper plants. Employing the continuous lifting technique, a continuous-discrete two-dimensional (2D) model is built that accurately describes the features of repetitive control. The 2D control input contains the direct sum of the effects of control and learning, which allows us to adjust control and learning preferentially. The singular-value decomposition of the output matrix and Lyapunov stability theory are used to derive an asymptotic stability condition based on a Linear Matrix Inequality (LMI). Two tuning parameters in the LMI manipulate the preferential adjustment of control and learning. A numerical example illustrates the tuning procedure and demonstrates the effectiveness of the method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 2; 325-334
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A practical application of kernel-based fuzzy discriminant analysis
Autorzy:
Gao, J. Q.
Fan, L. Y.
Li, L.
Xu, L. Z.
Powiązania:
https://bibliotekanauki.pl/articles/908344.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza dyskryminacyjna
algorytm najbliższego sąsiada
SVD
kernel fuzzy discriminant analysis
fuzzy k-nearest neighbor
QR decomposition
singular value decomposition (SVD)
fuzzy membership matrix
t-test
Opis:
A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variants, KFDA/QR and KFDA/SVD, of KFDA are obtained. In the proposed method, the membership degree is incorporated into the definition of between-class and within-class scatter matrices to get fuzzy between-class and within-class scatter matrices. The membership degree is obtained by combining the measures of features of samples data. In addition, the effects of employing different measures is investigated from a pure mathematical point of view, and the t-test statistical method is used for comparing the robustness of the learning algorithm. Experimental results on ORL and FERET face databases show that KFDA/QR and KFDA/SVD are more effective and feasible than Fuzzy Discriminant Analysis (FDA) and Kernel Discriminant Analysis (KDA) in terms of the mean correct recognition rate.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 887-903
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust aperiodic-disturbance rejection in an uncertain modified repetitive-control system
Autorzy:
Zhou, L.
She, J.
Li, C.
Pan, C.
Powiązania:
https://bibliotekanauki.pl/articles/330015.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
repetitive control
equivalent input disturbance
two dimensional system
singular value decomposition
linear matrix inequality
sterowanie powtarzalne
układ dwuwymiarowy
rozkład na wartości szczególne
liniowa nierówność macierzowa
Opis:
This paper concerns the problem of designing an EID-based robust output-feedback modified repetitive-control system (ROFMRCS) that provides satisfactory aperiodic-disturbance rejection performance for a class of plants with time-varying structured uncertainties. An equivalent-input-disturbance (EID) estimator is added to the ROFMRCS that estimates the influences of all types of disturbances and compensates them. A continuous-discrete two-dimensional model is built to describe the EID-based ROFMRCS that accurately presents the features of repetitive control, thereby enabling the control and learning actions to be preferentially adjusted. A robust stability condition for the closed-loop system is given in terms of a linear matrix inequality. It yields the parameters of the repetitive controller, the output-feedback controller, and the EID-estimator. Finally, a numerical example demonstrates the validity of the method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 285-295
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies